Deniz Cakir

List of Publications by Citations

Source: https://exaly.com/author-pdf/8767827/deniz-cakir-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

58
papers

2,255
citations

24
h-index
g-index

60
ext. papers

2,617
ext. citations

4.5
avg, IF

L-index

#	Paper	IF	Citations
58	Tuning of the electronic and optical properties of single-layer black phosphorus by strain. <i>Physical Review B</i> , 2014 , 90,	3.3	235
57	Mo2C as a high capacity anode material: a first-principles study. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 6029-6035	13	179
56	Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus. <i>Physical Review B</i> , 2015 , 92,	3.3	135
55	MXenes/graphene heterostructures for Li battery applications: a first principles study. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 2337-2345	13	119
54	Formation and stability of point defects in monolayer rhenium disulfide. <i>Physical Review B</i> , 2014 , 89,	3.3	118
53	Promising Piezoelectric Performance of Single Layer Transition-Metal Dichalcogenides and Dioxides. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 23231-23237	3.8	114
52	Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach. <i>Physical Review B</i> , 2015 , 92,	3.3	111
51	Mechanical and thermal properties of h-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers: A comparative study. <i>Applied Physics Letters</i> , 2014 , 104, 203110	3.4	110
50	Realization of a p-n junction in a single layer boron-phosphide. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 13013-20	3.6	93
49	Anisotropic exciton Stark shift in black phosphorus. <i>Physical Review B</i> , 2015 , 91,	3.3	85
48	The influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers. <i>Nanoscale</i> , 2018 , 10, 8859-8868	7.7	72
47	Half-metallic silicon nanowires: first-principles calculations. <i>Physical Review Letters</i> , 2007 , 99, 256806	7.4	66
46	Alkali Metal Intercalation in MXene/Graphene Heterostructures: A New Platform for Ion Battery Applications. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 727-734	6.4	60
45	Doping of rhenium disulfide monolayers: a systematic first principles study. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 16771-9	3.6	56
44	Fermi level pinning by integer charge transfer at electrode-organic semiconductor interfaces. <i>Applied Physics Letters</i> , 2011 , 98, 113303	3.4	41
43	Dependence of the electronic and transport properties of metal-MoSe2 interfaces on contact structures. <i>Physical Review B</i> , 2014 , 89,	3.3	38
42	Adsorption of Pt and Bimetallic PtAu Clusters on the Partially Reduced Rutile (110) TiO2 Surface: A First-Principles Study. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 5735-5746	3.8	36

(2019-2013)

41	Magnetic properties of bcc-Fe(001)/Clinterfaces for organic spintronics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2013 , 5, 837-41	9.5	33	
40	Peculiar Piezoelectric Properties of Soft Two-Dimensional Materials. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 13948-13953	3.8	32	
39	Effect of impurities on the mechanical and electronic properties of Au, Ag, and Cu monatomic chain nanowires. <i>Physical Review B</i> , 2011 , 84,	3.3	28	
38	Piezoelectricity in two-dimensional materials: Comparative study between lattice dynamics and ab initio calculations. <i>Physical Review B</i> , 2017 , 95,	3.3	25	
37	Modeling charge transfer at organic donor-acceptor semiconductor interfaces. <i>Applied Physics Letters</i> , 2012 , 100, 203302	3.4	25	
36	Role of intrinsic molecular dipole in energy level alignment at organic interfaces. <i>Applied Physics Letters</i> , 2013 , 102, 223301	3.4	25	
35	Dye adsorbates BrPDI, BrGly, and BrAsp on anatase TiO2(001) for dye-sensitized solar cell applications. <i>Physical Review B</i> , 2009 , 80,	3.3	25	
34	Strain enhancement of acoustic phonon limited mobility in monolayer TiS3. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 14434-41	3.6	24	
33	A distinct correlation between the vibrational and thermal transport properties of group VA monolayer crystals. <i>Nanoscale</i> , 2018 , 10, 7803-7812	7.7	23	
32	Ab initio study of neutral (TiO2)n clusters and their interactions with water and transition metal atoms. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 305301	1.8	22	
31	Engineering electronic properties of metalMoSe2 interfaces using self-assembled monolayers. Journal of Materials Chemistry C, 2014 , 2, 9842-9849	7.1	21	
30	First-principles study of thin TiOx and bulklike rutile nanowires. <i>Physical Review B</i> , 2009 , 80,	3.3	21	
29	First principles study of electronic and mechanical properties of molybdenum selenide type nanowires. <i>Physical Review B</i> , 2006 , 74,	3.3	21	
28	Intercalation of Si between MoS layers. <i>Beilstein Journal of Nanotechnology</i> , 2017 , 8, 1952-1960	3	20	
27	StrainBpintronics: Modulating Electronic and Magnetic Properties of Hf2MnC2O2 MXene by Uniaxial Strain. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 12451-12459	3.8	19	
26	Charge equilibration and potential steps in organic semiconductor multilayers. <i>Organic Electronics</i> , 2012 , 13, 1793-1801	3.5	19	
25	Magnetoresistance in multilayer fullerene spin valves: A first-principles study. <i>Physical Review B</i> , 2014 , 90,	3.3	18	
24	Achieving Fast Kinetics and Enhanced Li Storage Capacity for Ti3C2O2 by Intercalation of Quinone Molecules. <i>ACS Applied Energy Materials</i> , 2019 , 2, 1251-1258	6.1	15	

23	Tailoring Storage Capacity and Ion Kinetics in Ti2CO2/Graphene Heterostructures by Functionalization of Graphene. <i>Physical Review Applied</i> , 2019 , 12,	4.3	14
22	From spin-polarized interfaces to giant magnetoresistance in organic spin valves. <i>Physical Review B</i> , 2014 , 89,	3.3	14
21	A systematical ab-initio review of promising 2D MXene monolayers towards Li-ion battery applications. <i>JPhys Energy</i> , 2020 , 2, 032006	4.9	14
20	Gate induced monolayer behavior in twisted bilayer black phosphorus. 2D Materials, 2017, 4, 035025	5.9	12
19	Native Defects and the Dehydrogenation of NaBH4. Journal of Physical Chemistry C, 2011, 115, 24429-2	4484	12
18	Strain engineering of electronic and magnetic properties of double-transition metal ferromagnetic semiconductor MXenes. <i>Journal of Applied Physics</i> , 2019 , 125, 082527	2.5	12
17	Comprehensive Study of Lithium Adsorption and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using First-Principles and Machine Learning Approaches. <i>ACS Applied Materials & Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using First-Principles and Machine Learning Approaches. ACS Applied Materials & Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using First-Principles and Machine Learning Approaches. <i>ACS Applied Materials & Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using First-Principles and Machine Learning Approaches. ACS Applied Materials & Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using First-Principles and Machine Learning Approaches. <i>ACS Applied Materials & Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using Principles and Machine Learning Approaches. ACS Applied Materials & Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using Principles and Machine Learning Approaches. ACS Applied Materials & Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using Principles and Machine Learning Approaches. ACS Applied Materials & Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using Principles and Machine Learning Approaches. ACS Applied Materials & Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using Principles and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using Principles and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using Principles and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using Principles and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using Principles and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using Principles and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using Principles and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using Principles and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using Principles and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using Principles and Diffusion on Di</i></i></i>	388 - 36	64 06
16	Temperature-dependent phonon spectrum of transition metal dichalcogenides calculated from the spectral energy density: Lattice thermal conductivity as an application. <i>Physical Review B</i> , 2019 , 100,	3.3	11
15	Assessment of Sulfur-Functionalized MXenes for Li-Ion Battery Applications. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 21293-21304	3.8	8
14	On the structural and electronic properties of Ir-silicide nanowires on Si(001) surface. <i>Journal of Applied Physics</i> , 2016 , 120, 095303	2.5	8
13	Fluorographane: a promising material for bipolar doping of MoS2. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 27636-41	3.6	7
12	Revealing the Formation Energy-Exfoliation Energy-Structure Correlation of MAB Phases Using Machine Learning and DFT. <i>ACS Applied Materials & Energy Interfaces</i> , 2020 , 12, 29424-29431	9.5	7
11	Determination of Dynamically Stable Electrenes toward Ultrafast Charging Battery Applications. Journal of Physical Chemistry Letters, 2018 , 9, 4267-4274	6.4	7
10	Interaction of BrPDI, BrGly, and BrAsp with the Rutile TiO2(110) Surface for Photovoltaic and Photocatalytic Applications: A First-Principles Study. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 9220-92	22 ³ 6 ⁸	7
9	Scanning Tunneling Microscopy and Density Functional Theory Study on Zinc(II)-Phthalocyanine Tetrasulfonic Acid on Bilayer Epitaxial Graphene on Silicon Carbide(0001). <i>Journal of Physical Chemistry C</i> , 2015 , 119, 9845-9850	3.8	4
8	Electronic and mechanical properties of stiff rhenium carbide monolayers: A first-principles investigation. <i>Applied Surface Science</i> , 2018 , 458, 762-768	6.7	4
7	Enhanced Electrochemical Storage Properties of Na- and Mg-Intercalated B-Doped-Graphene Based Heterostructures and Bilayers. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 1260-1268	3.8	4
6	Silicene-Like Domains on IrSi3 Crystallites. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 7225-7229	3.8	3

LIST OF PUBLICATIONS

5	In pursuit of barrierless transition metal dichalcogenides lateral heterojunctions. <i>Nanotechnology</i> , 2018 , 29, 295202	3.4	3
4	Angle-resolved synchrotron photoemission and density functional theory on the iridium modified Si(1 1 1) surface. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 285501	1.8	3
3	Stability of adsorption of Mg and Na on sulfur-functionalized MXenes. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 25424-25433	3.6	2
2	Engineering magnetic anisotropy and exchange couplings in double transition metal MXenes via surface defects. <i>Journal of Physics Condensed Matter</i> , 2020 , 33, 035801	1.8	1
1	Study of iridium silicide monolayers using density functional theory. <i>Journal of Applied Physics</i> , 2018 , 123, 074301	2.5	0