
Javad Paknahad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8767738/publications.pdf Version: 2024-02-01

Ιλυλο Ρλκνληλο

#	Article	IF	CITATIONS
1	Selective Activation of Retinal Ganglion Cell Subtypes Through Targeted Electrical Stimulation Parameters. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 350-359.	2.7	1
2	The Influence of Electrode Properties on Induced Voltage Gradient Along the Rat Optic Nerve. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2022, 6, 321-330.	2.3	1
3	Color and cellular selectivity of retinal ganglion cell subtypes through frequency modulation of electrical stimulation. Scientific Reports, 2021, 11, 5177.	1.6	17
4	Model-based comparison of current flow in rod bipolar cells of healthy and early-stage degenerated retina. Experimental Eye Research, 2021, 207, 108554.	1.2	8
5	An Efficient, Large-Gradient, Electrical Stimulation System to Promote Directional Neural Growth. , 2021, , .		1
6	Mechanisms underlying activation of retinal bipolar cells through targeted electrical stimulation: a computational study. Journal of Neural Engineering, 2021, 18, 066034.	1.8	5
7	A Computational Model Simulates Light-Evoked Responses in the Retinal Cone Pathway. , 2021, 2021, 4482-4486.		3
8	Electrode Spacing and Current Distribution in Electrical Stimulation of Peripheral Nerve: A Computational Modeling Study using Realistic Nerve Models. , 2021, 2021, 4416-4419.		3
9	On the Design of an Efficient Inductive Wireless Power Transfer for Passive Neurostimulation Systems. , 2021, 2021, 7497-7501.		1
10	Modeling ON Cone Bipolar Cells for Electrical Stimulation. , 2021, 2021, 6547-6550.		6
11	Responsiveness of Retinal Ganglion Cells Through Frequency Modulation of Electrical Stimulation: A Computational Modeling Study*. , 2020, 2020, 3393-3398.		12
12	Admittance Method for Estimating Local Field Potentials Generated in a Multi-Scale Neuron Model of the Hippocampus. Frontiers in Computational Neuroscience, 2020, 14, 72.	1.2	10
13	Targeted Stimulation of Retinal Ganglion Cells in Epiretinal Prostheses: A Multiscale Computational Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 2548-2556.	2.7	18
14	Wireless Telemetry System With Independent Power and Data Frequency Resonance. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 690-694.	2.4	14
15	Recent Advances in Computational and Experimental Bioelectromagnetics for Neuroprosthetics. , 2019, , .		9
16	Electromagnetic Safety Assessment of a Cortical Implant for Vision Restoration. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2018, 2, 56-63.	2.3	18
17	The Effect of an Ocean-Land Mixed Propagation Path on the Lightning Electromagnetic Fields and Their Induced Voltages on Overhead Lines. IEEE Transactions on Power Delivery, 2015, 30, 229-236.	2.9	19
18	Propagation effects on lightning magnetic fields over hilly and mountainous terrain. , 2015, , .		8

Javad Paknahad

#	Article	IF	CITATIONS
19	The Influence of the Slope Angle of the Ocean–Land Mixed Propagation Path on the Lightning Electromagnetic Fields. IEEE Transactions on Electromagnetic Compatibility, 2015, 57, 1086-1095.	1.4	12
20	Lightning Electromagnetic Fields and Their Induced Voltages on Overhead Lines: The Effect of a Horizontally Stratified Ground. IEEE Transactions on Power Delivery, 2015, 30, 290-298.	2.9	26
21	Evaluation of Lightning-Induced Currents on Cables Buried in a Lossy Dispersive Ground. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 1522-1529.	1.4	25
22	Lightning electromagnetic fields and their induced voltages on overhead lines: the effect of a non-flat lossy ground. , 2014, , .		20
23	Lightning Electromagnetic Fields and Their Induced Currents on Buried Cables. Part I: The Effect of an Ocean–Land Mixed Propagation Path. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 1137-1145.	1.4	30
24	Lightning Electromagnetic Fields and Their Induced Currents on Buried Cables. Part II: The Effect of a Horizontally Stratified Ground. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 1146-1154.	1.4	36
25	Lightning induced currents on river-crossing buried cables. , 2014, , .		1