Teresa Milano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8767520/publications.pdf

Version: 2024-02-01

1040056 888059 17 304 9 17 citations h-index g-index papers 17 17 17 504 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Loss-of-Function Mutations in APPL1 in Familial Diabetes Mellitus. American Journal of Human Genetics, 2015, 97, 177-185.	6.2	114
2	Molecular mechanism of PdxR–Âa transcriptional activator involved in the regulation of vitamin B ₆ biosynthesis in the probiotic bacterium <i>BacillusÂclausii</i> . FEBS Journal, 2015, 282, 2966-2984.	4.7	33
3	Mutation of <i><scp>CHRNA</scp>2</i> in a family with benign familial infantile seizures: Potential role of nicotinic acetylcholine receptor in various phenotypes of epilepsy. Epilepsia, 2015, 56, e53-7.	5.1	19
4	Study of DNA binding and bending by Bacillus subtilis GabR, a PLP-dependent transcription factor. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3474-3489.	2.4	18
5	Conformational transitions driven by pyridoxal-5′-phosphate uptake in the psychrophilic serine hydroxymethyltransferase from <i>P</i> i>ci>sychromonas ingrahamiii>. Proteins: Structure, Function and Bioinformatics, 2014, 82, 2831-2841.	2.6	17
6	The aspartate aminotransferase-like domain of Firmicutes MocR transcriptional regulators. Computational Biology and Chemistry, 2015, 58, 55-61.	2.3	16
7	Zika Virus spreading in South America: Evolutionary analysis of emerging neutralizing resistant Phe279Ser strains. Asian Pacific Journal of Tropical Medicine, 2016, 9, 445-452.	0.8	14
8	<i>Salmonella typhimurium</i> PtsJ is a novel MocRâ€like transcriptional repressor involved in regulating the vitamin B ₆ salvage pathway. FEBS Journal, 2017, 284, 466-484.	4.7	14
9	Structural properties of the linkers connecting the N- and C- terminal domains in the MocR bacterial transcriptional regulators. Biochimie Open, 2016, 3, 8-18.	3.2	10
10	Molecular dynamics simulation unveils the conformational flexibility of the interdomain linker in the bacterial transcriptional regulator GabR from Bacillus subtilis bound to pyridoxal 5'-phosphate. PLoS ONE, 2017, 12, e0189270.	2.5	10
11	A Bioinformatics Analysis Reveals a Group of MocR Bacterial Transcriptional Regulators Linked to a Family of Genes Coding for Membrane Proteins. Biochemistry Research International, 2016, 2016, 1-13.	3.3	9
12	Data from computational analysis of the peptide linkers in the MocR bacterial transcriptional regulators. Data in Brief, 2016, 9, 292-313.	1.0	7
13	Interaction of Bacillus subtilis GabR with the gabTD promoter: role of repeated sequences and effect of GABA in transcriptional activation. FEBS Journal, 2020, 287, 4952-4970.	4.7	7
14	Klebsiella pneumoniae blaKPC-3 nosocomial epidemic: Bayesian and evolutionary analysis. Infection, Genetics and Evolution, 2016, 46, 85-93.	2.3	6
15	Conserved water molecules in bacterial serine hydroxymethyltransferases. Protein Engineering, Design and Selection, 2015, 28, 415-426.	2.1	4
16	Hepatitis C virus genotype 3A in a population of injecting drug users in Montenegro: Bayesian and evolutionary analysis. Archives of Virology, 2017, 162, 1549-1561.	2.1	3
17	A Comprehensive Computational Analysis of Mycobacterium Genomes Pinpoints the Genes Co-occurring with YczE, a Membrane Protein Coding Gene Under the Putative Control of a MocR, and Predicts its Function. Interdisciplinary Sciences, Computational Life Sciences, 2018, 10, 111-125.	3.6	3