Jiyu Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8766898/publications.pdf

Version: 2024-02-01

38	603	687363	642732
papers	s citations	h-index	g-index
38	38	38	685
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Improving surface wettability and adhesion property of polytetrafluoroethylene by atmospheric-pressure ammonia water-mixed plasma treatment. Vacuum, 2022, 196, 110763.	3.5	11
2	PDMS mesh with reversible super-wettability for oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128462.	4.7	16
3	Maintenance of superhydrophobic concrete for high compressive strength. Journal of Materials Science, 2021, 56, 4588-4598.	3.7	14
4	Atmospheric pressure cold plasma jet–assisted micro-milling TC4 titanium alloy. International Journal of Advanced Manufacturing Technology, 2021, 112, 2201-2209.	3.0	10
5	An environmentally friendly and cost-effective method to fabricate superhydrophobic PU sponge for oil/water separation. Journal of Dispersion Science and Technology, 2020, 41, 1136-1144.	2.4	5
6	Development of superhydrophilic Al foil with micropore arrays via mask electrochemical machining and chemical immersion for efficient oil/water separation. Journal of Dispersion Science and Technology, 2020, 41, 1335-1345.	2.4	6
7	Superhydrophilic–superhydrophobic patterned surfaces on glass substrate for water harvesting. Journal of Materials Science, 2020, 55, 498-508.	3.7	46
8	Atmospheric pressure plasma jet and minimum quantity lubrication assisted micro-grinding of quenched GCr15. International Journal of Advanced Manufacturing Technology, 2020, 106, 191-199.	3.0	3
9	Through-mask electrochemical micromachining of micro pillar arrays on aluminum. Surface and Coatings Technology, 2020, 401, 126277.	4.8	19
10	Investigation on time stability of laser-textured patterned surfaces under different temperatures. Surface and Coatings Technology, 2020, 400, 126225.	4.8	5
11	3D FEM simulation of chip breakage in turning AISI1045 with complicate-grooved insert. International Journal of Advanced Manufacturing Technology, 2020, 108, 1331-1341.	3.0	8
12	A green, maskless, and universal preparation method for patterned surfaces on various metal substrates. Applied Surface Science, 2020, 514, 145838.	6.1	19
13	Atmospheric pressure plasma-assisted precision turning of pure iron material. International Journal of Advanced Manufacturing Technology, 2020, 106, 5187-5197.	3.0	5
14	An environmentally-friendly method to fabricate extreme wettability patterns on metal substrates with good time stability. Applied Surface Science, 2019, 494, 880-885.	6.1	11
15	Atmospheric pressure plasma jet assisted micro-milling of Inconel 718. International Journal of Advanced Manufacturing Technology, 2019, 103, 4681-4687.	3.0	8
16	Superaerophilic Wedge-Shaped Channels with Precovered Air Film for Efficient Subaqueous Bubbles/Jet Transportation and Continuous Oxygen Supplementation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23808-23814.	8.0	32
17	Comparative study of surface modification of polyethylene by parallel-field and cross-field atmospheric pressure plasma jets. Journal of Applied Physics, 2019, 125, .	2.5	8
18	Controllable wettability of laser treated aluminum mesh for on-demand oil/water separation. Journal of Dispersion Science and Technology, 2019, 40, 1627-1636.	2.4	6

#	Article	IF	Citations
19	Droplet Mechanical Hand Based on Anisotropic Water Adhesion of Hydrophobic–Superhydrophobic Patterned Surfaces. Langmuir, 2019, 35, 935-942.	3.5	13
20	A universal method to create surface patterns with extreme wettability on metal substrates. Journal of Colloid and Interface Science, 2019, 535, 100-110.	9.4	21
21	Electrolytic colouring method for preparing robust coloured superhydrophobic surfaces with good corrosion resistance. Micro and Nano Letters, 2019, 14, 5-10.	1.3	6
22	Maskless Hydrophilic Patterning of the Superhydrophobic Aluminum Surface by an Atmospheric Pressure Microplasma Jet for Water Adhesion Controlling. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7497-7503.	8.0	46
23	Water strider-inspired design of a water walking robot using superhydrophobic Al surface. Journal of Dispersion Science and Technology, 2018, 39, 1840-1847.	2.4	18
24	Soft elastic superhydrophobic cotton: A new material for contact time reduction in droplet bouncing. Surface and Coatings Technology, 2018, 347, 420-426.	4.8	20
25	Reversible lossless manipulation of water droplets with largeâ€range volume. Micro and Nano Letters, 2018, 13, 896-901.	1.3	2
26	Fabrication of extreme wettability patterns with water-film protection for organic liquids. Journal of Dispersion Science and Technology, 2017, 38, 566-569.	2.4	2
27	Pouringâ€type gravityâ€driven oil–water separation without water bridge. Micro and Nano Letters, 2017, 12, 744-748.	1.3	8
28	Wettability-gradient surface fabricated by combining electrochemical etching and lithography. Journal of Dispersion Science and Technology, 2017, 38, 979-984.	2.4	12
29	Long″asting oil wettability patterns fabrication on superoleophobic surfaces by atmospheric pressure DBD plasma jet. Micro and Nano Letters, 2017, 12, 1000-1005.	1.3	3
30	Fabrication and application of superhydrophobic-superoleophilic porous Cu sponge. , 2017, , .		0
31	Unpowered oil absorption by a wettability sponge based oil skimmer. RSC Advances, 2016, 6, 88001-88009.	3.6	22
32	Oneâ€step modification method to fabricate wettability patterns on aluminium substrate. Micro and Nano Letters, 2016, 11, 697-701.	1.3	2
33	Atmospheric Pressure Plasma Functionalized Polymer Mesh: An Environmentally Friendly and Efficient Tool for Oil/Water Separation. ACS Sustainable Chemistry and Engineering, 2016, 4, 6828-6837.	6.7	91
34	Adjusting the stability of plasma treated superhydrophobic surfaces by different modifications or microstructures. RSC Advances, 2016, 6, 79437-79447.	3.6	14
35	Veinâ€like directional transport platform of water on open aluminiuml substrate. Micro and Nano Letters, 2016, 11, 269-272.	1.3	10
36	Plasma Hydrophilization of Superhydrophobic Surface and Its Aging Behavior: The Effect of Micro/nanostructured Surface. Surface and Interface Analysis, 2016, 48, 368-372.	1.8	13

#	Article	IF	CITATIONS
37	Fabrication of superoleophobic surfaces on Zn substrates by electrochemical etching and perfluorooctanoic acid modification. Micro and Nano Letters, 2016, 11, 109-113.	1.3	1
38	Stability of plasma treated superhydrophobic surfaces under different ambient conditions. Journal of Colloid and Interface Science, 2016, 470, 221-228.	9.4	67