Stephen J Pettitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8766822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ubiquitin-dependent ATPase p97 removes cytotoxic trapped PARP1 from chromatin. Nature Cell Biology, 2022, 24, 62-73.	4.6	66
2	Resistance to <scp>DNA</scp> repair inhibitors in cancer. Molecular Oncology, 2022, 16, 3811-3827.	2.1	28
3	Functional screening reveals HORMAD1-driven gene dependencies associated with translesion synthesis and replication stress tolerance. Oncogene, 2022, 41, 3969-3977.	2.6	6
4	Captured snapshots of PARP1 in the active state reveal the mechanics of PARP1 allostery. Molecular Cell, 2022, 82, 2939-2951.e5.	4.5	22
5	Defective ALC1 nucleosome remodeling confers PARPi sensitization and synthetic lethality with HRD. Molecular Cell, 2021, 81, 767-783.e11.	4.5	72
6	Biomarkers Associating with PARP Inhibitor Benefit in Prostate Cancer in the TOPARP-B Trial. Cancer Discovery, 2021, 11, 2812-2827.	7.7	78
7	Anticancer innovative therapy congress: Highlights from the 10th anniversary edition. Cytokine and Growth Factor Reviews, 2021, 59, 1-8.	3.2	4
8	PBRM1 Deficiency Confers Synthetic Lethality to DNA Repair Inhibitors in Cancer. Cancer Research, 2021, 81, 2888-2902.	0.4	66
9	PolÎ, inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nature Communications, 2021, 12, 3636.	5.8	159
10	Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element. American Journal of Human Genetics, 2021, 108, 1190-1203.	2.6	6
11	Elucidating Prostate Cancer Behaviour During Treatment via Low-pass Whole-genome Sequencing of Circulating Tumour DNA. European Urology, 2021, 80, 243-253.	0.9	28
12	Sirtuin inhibition is synthetic lethal with BRCA1 or BRCA2 deficiency. Communications Biology, 2021, 4, 1270.	2.0	4
13	Longitudinal analysis of a secondary BRCA2 mutation using digital droplet PCR. Journal of Pathology: Clinical Research, 2020, 6, 3-11.	1.3	5
14	Clinical <i>BRCA1/2</i> Reversion Analysis Identifies Hotspot Mutations and Predicted Neoantigens Associated with Therapy Resistance. Cancer Discovery, 2020, 10, 1475-1488.	7.7	109
15	HNF4A and GATA6 Loss Reveals Therapeutically Actionable Subtypes in Pancreatic Cancer. Cell Reports, 2020, 31, 107625.	2.9	78
16	Phase I Trial of the PARP Inhibitor Olaparib and AKT Inhibitor Capivasertib in Patients with <i>BRCA1/2</i> - and Non– <i>BRCA1/2</i> -Mutant Cancers. Cancer Discovery, 2020, 10, 1528-1543.	7.7	82
17	Structural basis for allosteric PARP-1 retention on DNA breaks. Science, 2020, 368, .	6.0	191
18	Dissecting PARP inhibitor resistance with functional genomics. Current Opinion in Genetics and Development, 2019, 54, 55-63.	1.5	22

STEPHEN J PETTITT

#	Article	IF	CITATIONS
19	PARP inhibition enhances tumor cell–intrinsic immunity in ERCC1-deficient non–small cell lung cancer. Journal of Clinical Investigation, 2019, 129, 1211-1228.	3.9	222
20	PARP inhibitors and breast cancer: highlights and hang-ups. Expert Review of Precision Medicine and Drug Development, 2018, 3, 83-94.	0.4	4
21	E-Cadherin/ROS1 Inhibitor Synthetic Lethality in Breast Cancer. Cancer Discovery, 2018, 8, 498-515.	7.7	79
22	Mapping genetic vulnerabilities reveals BTK as a novel therapeutic target in oesophageal cancer. Gut, 2018, 67, 1780-1792.	6.1	19
23	The CST Complex Mediates End Protection at Double-Strand Breaks and Promotes PARP Inhibitor Sensitivity in BRCA1-Deficient Cells. Cell Reports, 2018, 23, 2107-2118.	2.9	110
24	Coupling bimolecular PARylation biosensors with genetic screens to identify PARylation targets. Nature Communications, 2018, 9, 2016.	5.8	22
25	Chemosensitivity profiling of osteosarcoma tumour cell lines identifies a model of BRCAness. Scientific Reports, 2018, 8, 10614.	1.6	13
26	The shieldin complex mediates 53BP1-dependent DNA repair. Nature, 2018, 560, 117-121.	13.7	445
27	Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance. Nature Communications, 2018, 9, 1849.	5.8	310
28	Identification of highly penetrant Rb-related synthetic lethal interactions in triple negative breast cancer. Oncogene, 2018, 37, 5701-5718.	2.6	24
29	Genome-wide barcoded transposon screen for cancer drug sensitivity in haploid mouse embryonic stem cells. Scientific Data, 2017, 4, 170020.	2.4	14
30	Modeling Therapy Resistance in <i>BRCA1/2</i> -Mutant Cancers. Molecular Cancer Therapeutics, 2017, 16, 2022-2034.	1.9	66
31	Elevated APOBEC3B expression drives a kataegic-like mutation signature and replication stress-related therapeutic vulnerabilities in p53-defective cells. British Journal of Cancer, 2017, 117, 113-123.	2.9	84
32	ATR Is a Therapeutic Target in Synovial Sarcoma. Cancer Research, 2017, 77, 7014-7026.	0.4	43
33	piggyBac Transposon-Based Insertional Mutagenesis in Mouse Haploid Embryonic Stem Cells. Methods in Molecular Biology, 2015, 1239, 15-28.	0.4	11
34	The <i>piggyBac</i> Transposon Displays Local and Distant Reintegration Preferences and Can Cause Mutations at Noncanonical Integration Sites. Molecular and Cellular Biology, 2013, 33, 1317-1330.	1.1	77
35	A Genetic Screen Using the PiggyBac Transposon in Haploid Cells Identifies Parp1 as a Mediator of Olaparib Toxicity. PLoS ONE, 2013, 8, e61520.	1.1	147
36	lsolation of homozygous mutant mouse embryonic stem cells using a dual selection system. Nucleic Acids Research, 2012, 40, e21-e21.	6.5	21

STEPHEN J PETTITT

#	Article	IF	Citations
37	Genome-Wide Forward Genetic Screens in Mouse ES Cells. Methods in Enzymology, 2010, 477, 217-242.	0.4	22
38	Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nature Methods, 2009, 6, 493-495.	9.0	340