
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8766814/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF               | CITATIONS                |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|
| 1  | Selectively buried growth of heavily B doped diamond layers with step-free surfaces in N doped diamond (111) by homoepitaxial lateral growth. Applied Surface Science, 2022, , 153340.                                            | 3.1              | 1                        |
| 2  | Impact of nitrogen doping on homoepitaxial diamond (111) growth. Diamond and Related Materials, 2022, 125, 108997.                                                                                                                | 1.8              | 0                        |
| 3  | ãf€ã,¤f¤f¢ãf³ãf‰é«~哿³¢ãf»ãf'ãf-ãf¼ãf‡ãfã,¤,¹å¿œç"¨ã«å'ã'ã¥é‡'属â€é…,化膜â€åŠå°Žä½"ï¼^MO                                                                                                                                              | Sï¹ <b>⁄@‰</b> 界 | Ĩé¢ã®ç¾çÇ <mark>¶</mark> |
| 4  | Inversion channel MOSFET on heteroepitaxially grown free-standing diamond. Carbon, 2021, 175, 615-619.                                                                                                                            | 5.4              | 9                        |
| 5  | Mechanical damage-free surface planarization of single-crystal diamond based on carbon solid solution into nickel. Diamond and Related Materials, 2021, 116, 108390.                                                              | 1.8              | 1                        |
| 6  | Inversion-type p-channel diamond MOSFET issues. Journal of Materials Research, 2021, 36, 4688-4702.                                                                                                                               | 1.2              | 13                       |
| 7  | Insight into temperature impact of Ta filaments on high-growth-rate diamond (100) films by hot-filament chemical vapor deposition. Diamond and Related Materials, 2021, 118, 108515.                                              | 1.8              | 8                        |
| 8  | Fabrication of inversion p-channel MOSFET with a nitrogen-doped diamond body. Applied Physics<br>Letters, 2021, 119, .                                                                                                            | 1.5              | 11                       |
| 9  | Energy distribution of Al2O3/diamond interface states characterized by high temperature capacitance-voltage method. Carbon, 2020, 168, 659-664.                                                                                   | 5.4              | 20                       |
| 10 | Insight into Al2O3/B-doped diamond interface states with high-temperature conductance method.<br>Applied Physics Letters, 2020, 117, .                                                                                            | 1.5              | 11                       |
| 11 | Formation of U-shaped diamond trenches with vertical {111} sidewalls by anisotropic etching of diamond (110) surfaces. Diamond and Related Materials, 2020, 103, 107713.                                                          | 1.8              | 15                       |
| 12 | Temperature dependence of diamond MOSFET transport properties. Japanese Journal of Applied Physics, 2020, 59, SGGD19.                                                                                                             | 0.8              | 4                        |
| 13 | Step-edge growth and doping of diamond. Semiconductors and Semimetals, 2020, 103, 57-72.                                                                                                                                          | 0.4              | 1                        |
| 14 | Highâ€Rate Growth of Single rystalline Diamond (100) Films by Hotâ€Filament Chemical Vapor Deposition<br>with Tantalum Filaments at 3000 °C. Physica Status Solidi (A) Applications and Materials Science, 2019,<br>216, 1900244. | 0.8              | 7                        |
| 15 | Inversion channel mobility and interface state density of diamond MOSFET using N-type body with various phosphorus concentrations. Applied Physics Letters, 2019, 114, .                                                          | 1.5              | 19                       |
| 16 | Conductive-probe atomic force microscopy and Kelvin-probe force microscopy characterization of<br>OH-terminated diamond (111) surfaces with step-terrace structures. Japanese Journal of Applied<br>Physics, 2019, 58, SIIB08.    | 0.8              | 5                        |
| 17 | Homoepitaxial Diamond Growth by Plasma-Enhanced Chemical Vapor Deposition. Topics in Applied Physics, 2019, , 1-29.                                                                                                               | 0.4              | 3                        |
| 18 | Highâ€Rate Growth of Singleâ€Crystalline Diamond (100) Films by Hotâ€Filament Chemical Vapor Deposition<br>with Tantalum Filaments at 3000 °C. Physica Status Solidi (A) Applications and Materials Science, 2019,<br>216–1970071 | 0.8              | 1                        |

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Anisotropic diamond etching through thermochemical reaction between Ni and diamond in high-temperature water vapour. Scientific Reports, 2018, 8, 6687.                                      | 1.6 | 41        |
| 20 | Direct observation of inversion capacitance in p-type diamond MOS capacitors with an electron injection layer. Japanese Journal of Applied Physics, 2018, 57, 04FR01.                        | 0.8 | 14        |
| 21 | Formation of atomically flat hydroxyl-terminated diamond (1â€ <sup>−</sup> 1â€ <sup>−</sup> 1) surfaces via water vapor annealing.<br>Applied Surface Science, 2018, 458, 222-225.           | 3.1 | 23        |
| 22 | Quantitative relevance of substitutional impurities to carrier dynamics in diamond. Physical Review<br>Materials, 2018, 2, .                                                                 | 0.9 | 9         |
| 23 | Fabrication of graphene on atomically flat diamond (111) surfaces using nickel as a catalyst. Diamond and Related Materials, 2017, 75, 105-109.                                              | 1.8 | 22        |
| 24 | Self-separation of freestanding diamond films using graphite interlayers precipitated from<br>C-dissolved Ni substrates. Journal of Crystal Growth, 2017, 470, 104-107.                      | 0.7 | 6         |
| 25 | Mechanism of anisotropic etching on diamond (111) surfaces by a hydrogen plasma treatment. Applied<br>Surface Science, 2017, 422, 452-455.                                                   | 3.1 | 22        |
| 26 | Diamond Schottky-pn diode using lightly nitrogen-doped layer. Diamond and Related Materials, 2017,<br>75, 152-154.                                                                           | 1.8 | 37        |
| 27 | B-doped diamond field-effect transistor with ferroelectric vinylidene fluoride–trifluoroethylene<br>gate insulator. Japanese Journal of Applied Physics, 2017, 56, 10PF06.                   | 0.8 | 3         |
| 28 | Influence of substrate misorientation on the surface morphology of homoepitaxial diamond (111)<br>films. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2051-2055. | 0.8 | 10        |
| 29 | H-terminated diamond field effect transistor with ferroelectric gate insulator. Applied Physics<br>Letters, 2016, 108, 242101.                                                               | 1.5 | 7         |
| 30 | Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics. Scientific Reports, 2016, 6, 31585.                                           | 1.6 | 150       |
| 31 | Atomically flat diamond (100) surface formation by anisotropic etching of solid-solution reaction of carbon into nickel. Diamond and Related Materials, 2016, 68, 127-130.                   | 1.8 | 20        |
| 32 | Time-resolved cyclotron resonance on dislocation-free HPHT diamond. Diamond and Related<br>Materials, 2016, 63, 38-42.                                                                       | 1.8 | 24        |
| 33 | Homoepitaxial Diamond Growth by Plasma-Enhanced Chemical Vapor Deposition. Topics in Applied Physics, 2015, , 1-29.                                                                          | 0.4 | 9         |
| 34 | Realization of Atomically Controlled Diamond Surfaces. Journal of the Japan Society for Precision<br>Engineering, 2014, 80, 433-438.                                                         | 0.0 | 0         |
| 35 | Atomistic mechanism of perfect alignment of nitrogen-vacancy centers in diamond. Applied Physics<br>Letters, 2014, 105, .                                                                    | 1.5 | 39        |
| 36 | Density functional studies of surface potentials for hydrogen and oxygen atoms on diamond (111)<br>surfaces. Japanese Journal of Applied Physics, 2014, 53, 02BD01.                          | 0.8 | 3         |

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Anisotropic lateral growth of homoepitaxial diamond (111) films by plasma-enhanced chemical vapor<br>deposition. Japanese Journal of Applied Physics, 2014, 53, 04EH04.                                                                                   | 0.8 | 19        |
| 38 | Free exciton luminescence from a diamond p–i–n diode grown on a substrate produced by<br>heteroepitaxy. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2251-2256.                                                               | 0.8 | 14        |
| 39 | Perfect selective alignment of nitrogen-vacancy centers in diamond. Applied Physics Express, 2014, 7, 055201.                                                                                                                                             | 1.1 | 84        |
| 40 | Reduction of nâ€ŧype diamond contact resistance by graphite electrode. Physica Status Solidi - Rapid<br>Research Letters, 2014, 8, 137-140.                                                                                                               | 1.2 | 16        |
| 41 | Formation of Graphene-on-Diamond Structure by Graphitization of Atomically Flat Diamond (111)<br>Surface. Japanese Journal of Applied Physics, 2013, 52, 110121.                                                                                          | 0.8 | 37        |
| 42 | Fabrication of (Bi,Pr)(Fe,Mn)O\$_{3}\$ Thin Films on Polycrystalline Diamond Substrates by Chemical Solution Deposition and Their Properties. Japanese Journal of Applied Physics, 2012, 51, 09LA08.                                                      | 0.8 | 5         |
| 43 | Isotope Effect of Deuterium Microwave Plasmas on the Formation of Atomically Flat (111) Diamond Surfaces. Japanese Journal of Applied Physics, 2012, 51, 090106.                                                                                          | 0.8 | 4         |
| 44 | Formation of Step-Free Surfaces on Diamond (111) Mesas by Homoepitaxial Lateral Growth. Japanese<br>Journal of Applied Physics, 2012, 51, 090107.                                                                                                         | 0.8 | 19        |
| 45 | Fractional Surface Termination of Diamond by Electrochemical Oxidation. Langmuir, 2012, 28, 47-50.                                                                                                                                                        | 1.6 | 38        |
| 46 | Isotope Effect of Deuterium Microwave Plasmas on the Formation of Atomically Flat (111) Diamond<br>Surfaces. Japanese Journal of Applied Physics, 2012, 51, 090106.                                                                                       | 0.8 | 2         |
| 47 | Formation of Step-Free Surfaces on Diamond (111) Mesas by Homoepitaxial Lateral Growth. Japanese<br>Journal of Applied Physics, 2012, 51, 090107.                                                                                                         | 0.8 | 19        |
| 48 | Fabrication of (Bi,Pr)(Fe,Mn)O3Thin Films on Polycrystalline Diamond Substrates by Chemical Solution<br>Deposition and Their Properties. Japanese Journal of Applied Physics, 2012, 51, 09LA08.                                                           | 0.8 | 1         |
| 49 | Electron emission from CVD diamond p–i–n junctions with negative electron affinity during room temperature operation. Diamond and Related Materials, 2011, 20, 917-921.                                                                                   | 1.8 | 10        |
| 50 | Effects of high-temperature annealing on electron spin resonance in SiOx films prepared by R. F.<br>sputtering system. Journal of Non-Crystalline Solids, 2011, 357, 981-985.                                                                             | 1.5 | 11        |
| 51 | The creation of a biomimetic interface between boron-doped diamond and immobilized proteins.<br>Biomaterials, 2011, 32, 7325-7332.                                                                                                                        | 5.7 | 31        |
| 52 | Carrier transport of diamond p <sup>+</sup> â€iâ€n <sup>+</sup> junction diode fabricated using<br>lowâ€resistance hopping p <sup>+</sup> and n <sup>+</sup> layers. Physica Status Solidi (A) Applications<br>and Materials Science, 2011, 208, 937-942. | 0.8 | 5         |
| 53 | Annealing Effects on Cathodoluminescence Properties of SiOxFilms Deposited by Radio Frequency<br>Sputtering. Japanese Journal of Applied Physics, 2011, 50, 01BF04.                                                                                       | 0.8 | 1         |
| 54 | Structure and Electrical Properties of (Pr, Mn)-Codoped BiFeO3â^•B-Doped Diamond Layered Structure.<br>Electrochemical and Solid-State Letters, 2011, 14, G31.                                                                                            | 2.2 | 6         |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Improvement of (001)-oriented diamond p-i-n diode by use of selective grown n+ layer. Physica Status<br>Solidi (A) Applications and Materials Science, 2010, 207, 2099-2104.                                                | 0.8 | 12        |
| 56 | Diamond Schottkyâ€pn diode without tradeâ€off relationship between onâ€resistance and blocking voltage.<br>Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2105-2109.                              | 0.8 | 34        |
| 57 | Electron Emission from a Diamond (111) p–i–n+Junction Diode with Negative Electron Affinity during<br>Room Temperature Operation. Applied Physics Express, 2010, 3, 041301.                                                 | 1.1 | 24        |
| 58 | Growth of atomically step-free surface on diamond {111} mesas. Diamond and Related Materials, 2010, 19, 288-290.                                                                                                            | 1.8 | 33        |
| 59 | Electron Emission from Diamond (111) p+-i-n+ Junction Diode. Materials Research Society Symposia<br>Proceedings, 2009, 1203, 1.                                                                                             | 0.1 | 0         |
| 60 | Vertically aligned diamond nanowires: Fabrication, characterization, and application for DNA sensing.<br>Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2048-2056.                                | 0.8 | 48        |
| 61 | Diamond Schottky p–n diode with high forward current density. Physica Status Solidi (A) Applications<br>and Materials Science, 2009, 206, 2086-2090.                                                                        | 0.8 | 20        |
| 62 | Dopingâ€induced changes in the valence band edge structure of homoepitaxial Bâ€doped diamond films<br>below Mott's critical density. Physica Status Solidi (A) Applications and Materials Science, 2009, 206,<br>1991-1995. | 0.8 | 5         |
| 63 | Diamond Schottky-pn diode with high forward current density and fast switching operation. Applied Physics Letters, 2009, 94, .                                                                                              | 1.5 | 77        |
| 64 | Flattening of oxidized diamond (111) surfaces with H2SO4/H2O2 solutions. Diamond and Related Materials, 2009, 18, 213-215.                                                                                                  | 1.8 | 12        |
| 65 | Selective Growth of Buried n+Diamond on (001) Phosphorus-Doped n-Type Diamond Film. Applied<br>Physics Express, 2009, 2, 055502.                                                                                            | 1.1 | 55        |
| 66 | Electrical and light-emitting properties from (111)-oriented homoepitaxial diamond p–i–n junctions.<br>Diamond and Related Materials, 2009, 18, 764-767.                                                                    | 1.8 | 18        |
| 67 | Diamond nano-wires, a new approach towards next generation electrochemical gene sensor platforms. Diamond and Related Materials, 2009, 18, 910-917.                                                                         | 1.8 | 82        |
| 68 | Characterization of specific contact resistance on heavily phosphorus-doped diamond films. Diamond and Related Materials, 2009, 18, 782-785.                                                                                | 1.8 | 35        |
| 69 | Recovery of negative electron affinity by annealing on (111) oxidized diamond surfaces. Diamond and<br>Related Materials, 2009, 18, 206-209.                                                                                | 1.8 | 9         |
| 70 | High performance of diamond p+-i-n+ junction diode fabricated using heavily doped p+ and n+ layers.<br>Applied Physics Letters, 2009, 94, .                                                                                 | 1.5 | 73        |
| 71 | Electrical and lightâ€emitting properties of homoepitaxial diamond p–i–n junction. Physica Status<br>Solidi (A) Applications and Materials Science, 2008, 205, 2200-2206.                                                   | 0.8 | 29        |
| 72 | Electrical activity of doped phosphorus atoms in (001) nâ€ŧype diamond. Physica Status Solidi (A)<br>Applications and Materials Science, 2008, 205, 2195-2199.                                                              | 0.8 | 29        |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Fermi level pinning-free interface at metals/homoepitaxial diamond (111) films after oxidation treatments. Applied Physics Letters, 2008, 92, 112112.                                                                        | 1.5 | 14        |
| 74 | Low specific contact resistance of heavily phosphorus-doped diamond film. Applied Physics Letters, 2008, 93, .                                                                                                               | 1.5 | 68        |
| 75 | Photoelectron emission from heavily B-doped homoepitaxial diamond films. Diamond and Related<br>Materials, 2008, 17, 813-816.                                                                                                | 1.8 | 3         |
| 76 | Atomically flat diamond (111) surface formation by homoepitaxial lateral growth. Diamond and Related Materials, 2008, 17, 1051-1054.                                                                                         | 1.8 | 43        |
| 77 | Roughening of atomically flat diamond (111) surfaces by a hot HNO3/H2SO4 solution. Diamond and Related Materials, 2008, 17, 486-488.                                                                                         | 1.8 | 14        |
| 78 | Mapping of extended defects in B-doped (001) homoepitaxial diamond films by electron-beam-induced<br>current (EBIC) and cathodoluminescence (CL) combination technique. Diamond and Related Materials,<br>2008, 17, 489-493. | 1.8 | 5         |
| 79 | Exciton-derived Electron Emission from (001) Diamond <i>p</i> – <i>n</i> Junction Diodes with Negative Electron Affinity. Applied Physics Express, 2008, 1, 015004.                                                          | 1.1 | 8         |
| 80 | Diamond nanowires, a new approach towards next generation electrochemical gene sensor platforms. Nature Precedings, 2008, , .                                                                                                | 0.1 | 0         |
| 81 | Electrochemical-microscopy analysis of bio-functionalized diamond surfaces. Materials Research<br>Society Symposia Proceedings, 2007, 1039, 1.                                                                               | 0.1 | Ο         |
| 82 | Hillock-Free Heavily Boron-Doped Homoepitaxial Diamond Films on Misoriented (001) Substrates.<br>Japanese Journal of Applied Physics, 2007, 46, 1469-1470.                                                                   | 0.8 | 28        |
| 83 | Cycle of two-step etching process using ICP for diamond MEMS applications. Diamond and Related Materials, 2007, 16, 996-999.                                                                                                 | 1.8 | 47        |
| 84 | Surface roughening of diamond (001) films during homoepitaxial growth in heavy boron doping.<br>Diamond and Related Materials, 2007, 16, 767-770.                                                                            | 1.8 | 37        |
| 85 | Inhomogeneous DNA bonding to polycrystalline CVD diamond. Diamond and Related Materials, 2007, 16, 1648-1651.                                                                                                                | 1.8 | 13        |
| 86 | Leakage current analysis of diamond Schottky barrier diode. Applied Physics Letters, 2007, 90, 073506.                                                                                                                       | 1.5 | 121       |
| 87 | Electrochemical Grafting of Boron-Doped Single-Crystalline Chemical Vapor Deposition Diamond with<br>Nitrophenyl Molecules. Langmuir, 2007, 23, 3466-3472.                                                                   | 1.6 | 106       |
| 88 | Electrical and light-emitting properties of (001)-oriented homoepitaxial diamond p–i–n junction.<br>Diamond and Related Materials, 2007, 16, 1025-1028.                                                                      | 1.8 | 18        |
| 89 | Surface electronic properties on boron doped (111) CVD homoepitaxial diamond films after oxidation treatments. Diamond and Related Materials, 2007, 16, 831-835.                                                             | 1.8 | 6         |
| 90 | The role of boron atoms in heavily boron-doped semiconducting homoepitaxial diamond growth —<br>Study of surface morphology. Diamond and Related Materials, 2007, 16, 409-411.                                               | 1.8 | 11        |

| #   | Article                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Diamond and biology. Journal of the Royal Society Interface, 2007, 4, 439-461.                                                                                              | 1.5 | 134       |
| 92  | Direct observation of two-dimensional growth at SiO2/Si(111) interface. Thin Solid Films, 2007, 515, 7892-7898.                                                             | 0.8 | 16        |
| 93  | Surface conductive layers on (111) diamonds after oxygen treatments. Diamond and Related Materials, 2006, 15, 692-697.                                                      | 1.8 | 20        |
| 94  | Characterization of leakage current on diamond Schottky barrier diodes using thermionic-field emission modeling. Diamond and Related Materials, 2006, 15, 1949-1953.        | 1.8 | 66        |
| 95  | Photo- and electrochemical bonding of DNA to single crystalline CVD diamond. Physica Status Solidi<br>(A) Applications and Materials Science, 2006, 203, 3245-3272.         | 0.8 | 45        |
| 96  | Periodically arranged benzene-linker molecules on boron-doped single-crystalline diamond films for DNA sensing. Electrochemistry Communications, 2006, 8, 844-850.          | 2.3 | 49        |
| 97  | Energetics of dopant atoms in subsurface positions of diamond semiconductor. Superlattices and Microstructures, 2006, 40, 574-579.                                          | 1.4 | 4         |
| 98  | High-Efficiency Excitonic Emission with Deep-Ultraviolet Light from (001)-Oriented<br>Diamondp-i-nJunction. Japanese Journal of Applied Physics, 2006, 45, L1042-L1044.     | 0.8 | 52        |
| 99  | Diamond Surface Modifications with Diazonium Salt. Materials Research Society Symposia<br>Proceedings, 2006, 956, 1.                                                        | 0.1 | Ο         |
| 100 | Utilization of Si atomic steps for Cu nanowire fabrication. Science and Technology of Advanced Materials, 2005, 6, 667-670.                                                 | 2.8 | 4         |
| 101 | Selective Growth of Monoatomic Cu Rows at Step Edges on Si(111) Substrates in<br>Ultralow-Dissolved-Oxygen Water. Japanese Journal of Applied Physics, 2005, 44, L613-L615. | 0.8 | 11        |
| 102 | Selective Growth of Ag Nanowires on Si(111) Surfaces by Electroless Deposition. Journal of Physical Chemistry B, 2005, 109, 12655-12657.                                    | 1.2 | 12        |
| 103 | Local Dielectric Degradation of Cu-Contaminated SiO <sub>2</sub> Thin Films. Solid State<br>Phenomena, 2004, 95-96, 641-646.                                                | 0.3 | 1         |
| 104 | Nonuniformity in Ultrathin SiO2on Si(111) Characterized by Conductive Atomic Force Microscopy.<br>Japanese Journal of Applied Physics, 2004, 43, 7861-7865.                 | 0.8 | 25        |
| 105 | Leakage Current Distribution and Dielectric Breakdown of Cu-Contaminated Thin SiO[sub 2]. Journal of the Electrochemical Society, 2004, 151, F81.                           | 1.3 | 4         |
| 106 | Fabrication of Cu nanowires along atomic step edge lines on Si(111) substrates. Applied Surface Science, 2004, 237, 529-532.                                                | 3.1 | 10        |
| 107 | Effect of SiO2Fence on Atomic Step Flow in Chemical Etching of Si Surface. Japanese Journal of Applied Physics, 2003, 42, L561-L563.                                        | 0.8 | 9         |
| 108 | Topography Change Due to Multilayer Oxidation at SiO2/Si(111) Interfaces. Japanese Journal of Applied Physics, 2003, 42, 1903-1906.                                         | 0.8 | 13        |

| #   | Article                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Selective Growth of Cu Nanowires on Si(111) Substrates. Japanese Journal of Applied Physics, 2003, 42, L1210-L1212.                                                                     | 0.8 | 17        |
| 110 | Leakage Current Distribution of Cu-Contaminated Thin SiO2. Japanese Journal of Applied Physics, 2003, 42, L160-L162.                                                                    | 0.8 | 11        |
| 111 | Atomic Topography Change of SiO2/Si Interfaces during Thermal Oxidation. Japanese Journal of Applied Physics, 2002, 41, L505-L508.                                                      | 0.8 | 7         |
| 112 | Leakage current distribution in ultrathin oxide on silicon surface with step/terrace structures. Thin Solid Films, 2002, 414, 56-62.                                                    | 0.8 | 4         |
| 113 | SiO2Surface and SiO2/Si Interface Topography Change by Thermal Oxidation. Japanese Journal of Applied Physics, 2001, 40, 4763-4768.                                                     | 0.8 | 18        |
| 114 | Nanometer Scale Height Standard Using Atomically Controlled Diamond Surface. Applied Physics<br>Express, 0, 2, 055001.                                                                  | 1.1 | 20        |
| 115 | Microscopic Evaluation of Al <sub>2</sub> O <sub>3</sub> /p-Type Diamond (111)<br>Interfaces Using Scanning Nonlinear Dielectric Microscopy. Materials Science Forum, 0, 1062, 298-303. | 0.3 | 1         |