Karl Leo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8766723/publications.pdf

Version: 2024-02-01

207 papers 19,047 citations

65 h-index 134 g-index

212 all docs

212 docs citations

times ranked

212

15353 citing authors

#	Article	IF	CITATIONS
1	Nonlinear Behavior of Dendritic Polymer Networks for Reservoir Computing. Advanced Electronic Materials, 2022, 8, 2100330.	2.6	14
2	Narrowband organic photodetectors – towards miniaturized, spectroscopic sensing. Materials Horizons, 2022, 9, 220-251.	6.4	76
3	Tailoring Organic LEDs for Bidirectional Optogenetic Control via Dualâ€Color Switching. Advanced Functional Materials, 2022, 32, 2110590.	7.8	8
4	Photomultiplicationâ€Type Organic Photodetectors for Nearâ€Infrared Sensing with High and Biasâ€Independent Specific Detectivity. Advanced Science, 2022, 9, e2105113.	5.6	33
5	Photopatternable solid electrolyte for integrable organic electrochemical transistors: operation and hysteresis. Journal of Materials Chemistry C, 2022, 10, 2656-2662.	2.7	23
6	Reply to Comment on "Enhanced Charge Selectivity via Anodic-C ₆₀ Layer Reduces Nonradiative Losses in Organic Solar Cells― ACS Applied Materials & Interfaces, 2022, 14, 7527-7530.	4.0	2
7	Catalyzing n-doping. Innovation(China), 2022, 3, 100219.	5.2	1
8	Highly efficient modulation doping: A path toward superior organic thermoelectric devices. Science Advances, 2022, 8, eabl9264.	4.7	15
9	Insights into the evaporation behaviour of FAI: material degradation and consequences for perovskite solar cells. Sustainable Energy and Fuels, 2022, 6, 3230-3239.	2.5	15
10	Organic bipolar transistors. Nature, 2022, 606, 700-705.	13.7	35
10	Organic bipolar transistors. Nature, 2022, 606, 700-705. Temperature-Dependence of All-Solid-State Organic Electrochemical Transistors., 2022, , .	13.7	35
		0.1	
11	Temperature-Dependence of All-Solid-State Organic Electrochemical Transistors. , 2022, , . 45â€2: ⟨i⟩Invited Paper:⟨ i⟩ Towards Highâ€Performance Organic Transistors for Display and other		3
11 12	Temperature-Dependence of All-Solid-State Organic Electrochemical Transistors. , 2022, , . 45â€2: ⟨i⟩Invited Paper:⟨ i⟩ Towards Highâ€Performance Organic Transistors for Display and other Applications. Digest of Technical Papers SID International Symposium, 2022, 53, 565-568.	0.1	3 O
11 12 13	Temperature-Dependence of All-Solid-State Organic Electrochemical Transistors., 2022, , . 45â€2: ⟨i⟩Invited Paper:⟨ i⟩ Towards Highâ€Performance Organic Transistors for Display and other Applications. Digest of Technical Papers SID International Symposium, 2022, 53, 565-568. Optical Properties of Perovskiteâ€Organic Multiple Quantum Wells. Advanced Science, 2022, 9, .	0.1 5.6	3 O 9
11 12 13	Temperature-Dependence of All-Solid-State Organic Electrochemical Transistors., 2022, , . 45â€2: ⟨i⟩Invited Paper:⟨/i⟩ Towards Highâ€Performance Organic Transistors for Display and other Applications. Digest of Technical Papers SID International Symposium, 2022, 53, 565-568. Optical Properties of Perovskiteâ€Organic Multiple Quantum Wells. Advanced Science, 2022, 9, . Organic Solar Cellsâ€"The Path to Commercial Success. Advanced Energy Materials, 2021, 11, 2002653. Reverse dark current in organic photodetectors and the major role of traps as source of noise.	0.1 5.6 10.2	3 0 9 287
11 12 13 14	Temperature-Dependence of All-Solid-State Organic Electrochemical Transistors. , 2022, , . 45â€2: ⟨i⟩Invited Paper:⟨ i⟩ Towards Highâ€Performance Organic Transistors for Display and other Applications. Digest of Technical Papers SID International Symposium, 2022, 53, 565-568. Optical Properties of Perovskiteâ€Organic Multiple Quantum Wells. Advanced Science, 2022, 9, . Organic Solar Cellsâ€"The Path to Commercial Success. Advanced Energy Materials, 2021, 11, 2002653. Reverse dark current in organic photodetectors and the major role of traps as source of noise. Nature Communications, 2021, 12, 551.	0.1 5.6 10.2 5.8	3 0 9 287 122

#	Article	IF	CITATIONS
19	Efficient and low-voltage vertical organic permeable base light-emitting transistors. Nature Materials, 2021, 20, 1007-1014.	13.3	36
20	Enhanced Charge Selectivity via Anodic-C ₆₀ Layer Reduces Nonradiative Losses in Organic Solar Cells. ACS Applied Materials & Solar Cells. ACS ACS Applied Materials & Solar Cells. ACS Applied Materials & Solar Cells. ACS Applied Materials & Solar Cells. ACS	4.0	9
21	Vacuum processed large area doped thin-film crystals: A new approach for high-performance organic electronics. Materials Today Physics, 2021, 17, 100352.	2.9	15
22	Resonant Enhancement of Cavity Exciton–Polaritons via a Fano-Type Interaction in Organic Microcavities. ACS Photonics, 2021, 8, 1034-1040.	3.2	1
23	Optical Distance Measurement Based on Induced Nonlinear Photoresponse of High-Performance Organic Near-Infrared Photodetectors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 23239-23246.	4.0	14
24	One-dimensional planar topological laser. Nanophotonics, 2021, 10, 2459-2465.	2.9	8
25	Temperature-Dependent Charge-Transfer-State Absorption and Emission Reveal the Dominant Role of Dynamic Disorder in Organic Solar Cells. Physical Review Applied, 2021, 15, .	1.5	17
26	Band gap engineering in blended organic semiconductor films based on dielectric interactions. Nature Materials, 2021, 20, 1407-1413.	13.3	17
27	Efficient Thermally Evaporated γ sPbl ₃ Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100299.	10.2	35
28	Reducing Nonâ€Radiative Voltage Losses by Methylation of Push–Pull Molecular Donors in Organic Solar Cells. ChemSusChem, 2021, 14, 3622-3631.	3.6	4
29	Electrical Pumping of Perovskite Diodes: Toward Stimulated Emission. Advanced Science, 2021, 8, e2101663.	5.6	25
30	Integrated complementary inverters and ring oscillators based on vertical-channel dual-base organic thin-film transistors. Nature Electronics, 2021, 4, 588-594.	13.1	28
31	Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors. Nature Communications, 2021, 12, 4259.	5.8	69
32	Directed Growth of Dendritic Polymer Networks for Organic Electrochemical Transistors and Artificial Synapses. Advanced Electronic Materials, 2021, 7, 2100586.	2.6	29
33	Reservoir computing with biocompatible organic electrochemical networks for brain-inspired biosignal classification. Science Advances, 2021, 7, eabh0693.	4.7	72
34	Reduced Intrinsic Nonâ€Radiative Losses Allow Roomâ€Temperature Triplet Emission from Purely Organic Emitters. Advanced Materials, 2021, 33, e2101844.	11.1	28
35	Solution-processed pseudo-vertical organic transistors based on TIPS-pentacene. Materials Today Energy, 2021, 21, 100697.	2.5	13
36	Miniaturized VISâ€NIR Spectrometers Based on Narrowband and Tunable Transmission Cavity Organic Photodetectors with Ultrahigh Specific Detectivity above 10 ¹⁴ Jones. Advanced Materials, 2021, 33, e2102967.	11.1	58

#	Article	IF	CITATIONS
37	Membrane-Free, Selective Ion Sensing by Combining Organic Electrochemical Transistors and Impedance Analysis of Ionic Diffusion. ACS Applied Electronic Materials, 2021, 3, 3898-3903.	2.0	16
38	Coherent optical interaction between plasmonic nanoparticles and small organic dye molecules in microcavities. Applied Physics Letters, 2021, 118, 013301.	1.5	1
39	Doped Highly Crystalline Organic Films: Toward Highâ€Performance Organic Electronics. Advanced Science, 2021, 8, 2003519.	5.6	18
40	Stacked Dualâ€Wavelength Nearâ€Infrared Organic Photodetectors. Advanced Optical Materials, 2021, 9, 2001784.	3.6	40
41	Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, .	2.2	102
42	Control of Emission Characteristics of Perovskite Lasers through Optical Feedback. Advanced Photonics Research, 2021, 2, 2100177.	1.7	3
43	Effects of photon recycling and scattering in high-performance perovskite solar cells. Science Advances, 2021, 7, eabj1363.	4.7	17
44	Precise patterning of organic semiconductors by reactive ion etching. Organic Electronics, 2020, 76, 105357.	1.4	22
45	Controlling and Optimizing Amplified Spontaneous Emission in Perovskites. ACS Applied Materials & London Republication (12), 35242-35249.	4.0	34
46	Bioinspiration in light harvesting and catalysis. Nature Reviews Materials, 2020, 5, 828-846.	23.3	136
47	Universal Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. ACS Applied Materials & Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. ACS Applied Materials & Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. ACS Applied Materials & Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. ACS Applied Materials & Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. ACS Applied Materials & Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. ACS Applied Materials & Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. ACS Applied Materials & Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. ACS Applied Materials & Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. ACS Applied Materials & Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. ACS Applied Materials & Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. ACS Applied Materials & Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. ACS Applied Materials & Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. ACS Applied Materials & Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. ACS Applied Materials & Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. ACS Applied Materials & Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. ACS Applied Materials & Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. ACS Applied Materials & Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. ACS Applied Materials & Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. ACS Applied Materials & Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. ACS Applied Materials & Limit for Air-Stable Molecular n-Doping in Organic Materials & Limit for Air-Stable Molecular n-Doping in Organic Molecular n-Doping in Organic Molecular n-Doping in Organic Molecular n-Doping in Organic Molecular n-	4.0	4
48	Highâ€Performance Static Induction Transistors Based on Smallâ€Molecule Organic Semiconductors. Advanced Materials Technologies, 2020, 5, 2000361.	3.0	6
49	Controllable coherent absorption of counterpropagating laser beams in organic microcavities. Applied Physics Letters, 2020, 117, 053301.	1.5	4
50	Vertical organic permeable dual-base transistors for logic circuits. Nature Communications, 2020, 11, 4725.	5.8	25
51	Anodization for Simplified Processing and Efficient Charge Transport in Vertical Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2020, 30, 2001703.	7.8	6
52	Unraveling Structure and Device Operation of Organic Permeable Base Transistors. Advanced Electronic Materials, 2020, 6, 2000230.	2.6	11
53	Surface and mechanical analysis of metallized poly(dimethylsiloxane) gel for varifocal micromirrors. Surface and Interface Analysis, 2020, 52, 1163-1170.	0.8	2
54	Energy Level Engineering in Organic Thin Films by Tailored Halogenation. Advanced Functional Materials, 2020, 30, 2002987.	7.8	9

#	Article	IF	CITATIONS
55	Organic Thin-Film Red-Light Photodiodes with Tunable Spectral Response Via Selective Exciton Activation. ACS Applied Materials & Interfaces, 2020, 12, 13061-13067.	4.0	11
56	Modulating the Electronic and Solidâ€State Structure of Organic Semiconductors by Siteâ€Specific Substitution: The Case of Tetrafluoropentacenes. Chemistry - A European Journal, 2020, 26, 3420-3434.	1.7	16
57	A Review of Vertical Organic Transistors. Advanced Functional Materials, 2020, 30, 1907113.	7.8	101
58	Thermally evaporated methylammonium-free perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 7725-7733.	2.7	42
59	High-Performance Ultra-Short Channel Field-Effect Transistor Using Solution-Processable Colloidal Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 4025-4031.	2.1	14
60	Electrically Stable Organic Permeable Base Transistors for Display Applications. Advanced Electronic Materials, 2019, 5, 1900576.	2.6	13
61	Generating semi-metallic conductivity in polymers by laser-driven nanostructural reorganization. Materials Horizons, 2019, 6, 2143-2151.	6.4	21
62	Molecular parameters responsible for thermally activated transport in doped organic semiconductors. Nature Materials, 2019, 18, 242-248.	13.3	121
63	Intracavity metal contacts for organic microlasers. Journal of Materials Research, 2019, 34, 571-578.	1.2	5
64	Locking excitons in two-dimensional emitting layers for efficient monochrome and white organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 8929-8937.	2.7	5
65	Strategic-tuning of radiative excitons for efficient and stable fluorescent white organic light-emitting diodes. Nature Communications, 2019, 10, 2380.	5.8	84
66	Impact of molecular quadrupole moments on the energy levels at organic heterojunctions. Nature Communications, 2019, 10, 2466.	5.8	101
67	Effect of H- and J-Aggregation on the Photophysical and Voltage Loss of Boron Dipyrromethene Small Molecules in Vacuum-Deposited Organic Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 2684-2691.	2.1	32
68	Vertical Organic Thinâ€Film Transistors with an Anodized Permeable Base for Very Low Leakage Current. Advanced Materials, 2019, 31, e1900917.	11.1	21
69	High Electron Affinity Molecular Dopant CN6-CP for Efficient Organic Light-Emitting Diodes. ACS Applied Materials & Diodes. ACS Applied Materials & Diodes. ACS	4.0	29
70	Heteroquinoid Merocyanine Dyes with High Thermal Stability as Absorber Materials in Vacuumâ€Processed Organic Solar Cells. European Journal of Organic Chemistry, 2019, 2019, 845-851.	1.2	9
71	Ultrathin MoO3Layers in Composite Metal Electrodes: Improved Optics Allow Highly Efficient Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2019, 7, 1801262.	3.6	12
72	Insight into doping efficiency of organic semiconductors from the analysis of the density of states in n-doped C60 and ZnPc. Nature Materials, 2018, 17, 439-444.	13.3	101

#	Article	IF	Citations
73	Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1717-1732.	1.4	4
74	Elementary steps in electrical doping of organic semiconductors. Nature Communications, 2018, 9, 1182.	5 . 8	178
75	Optically pumped lasing of an electrically active hybrid OLED-microcavity. Applied Physics Letters, 2018, 112, .	1.5	20
76	Analyzing the n-Doping Mechanism of an Air-Stable Small-Molecule Precursor. ACS Applied Materials & Logical Representation (2018), 10, 1340-1346.	4.0	28
77	Balance of Horizontal and Vertical Charge Transport in Organic Field-Effect Transistors. Physical Review Applied, 2018, 10, .	1.5	25
78	Boron dipyrromethene (BODIPY) with <i>meso</i> perfluorinated alkyl substituents as near infrared donors in organic solar cells. Journal of Materials Chemistry A, 2018, 6, 18583-18591.	5.2	34
79	A Pulse-Biasing Small-Signal Measurement Technique Enabling 40 MHz Operation of Vertical Organic Transistors. Scientific Reports, 2018, 8, 7643.	1.6	47
80	Optical Inâ€Coupling in Organic Solar Cells. Small Methods, 2018, 2, 1800123.	4.6	19
81	Non-Linear Self-Heating in Organic Transistors Reaching High Power Densities. Scientific Reports, 2018, 8, 9806.	1.6	19
82	Three-terminal RGB full-color OLED pixels for ultrahigh density displays. Scientific Reports, 2018, 8, 9684.	1.6	55
83	Phaseâ€Locked Lasing in 1D and 2D Patterned Metal–Organic Microcavities. Laser and Photonics Reviews, 2018, 12, 1800054.	4.4	6
84	Optimized coil design for magnetic local positioning systems. , 2018, , .		1
85	Exciton Diffusion Length and Charge Extraction Yield in Organic Bilayer Solar Cells. Advanced Materials, 2017, 29, 1604424.	11.1	36
86	Very Small Inverted Hysteresis in Vacuumâ€Deposited Mixed Organic–Inorganic Hybrid Perovskite Solar Cells. Energy Technology, 2017, 5, 1606-1611.	1.8	13
87	H-aggregated small molecular nanowires as near infrared absorbers for organic solar cells. Organic Electronics, 2017, 45, 198-202.	1.4	12
88	Influence of aging climate and cathode adhesion on organic solar cell stability. Solar Energy Materials and Solar Cells, 2017, 168, 1-7.	3.0	10
89	Aza-BODIPY dyes with heterocyclic substituents and their derivatives bearing a cyanide co-ligand: NIR donor materials for vacuum-processed solar cells. Journal of Materials Chemistry A, 2017, 5, 10696-10703.	5.2	36
90	Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption. Nature Communications, 2017, 8, 15421.	5.8	203

#	Article	IF	Citations
91	3â€2: <i>Invited Paper</i> : Color on Demand â€" Colorâ€Tunable OLEDs for Lighting and Displays. Digest of Technical Papers SID International Symposium, 2017, 48, 5-8.	0.1	2
92	Organic Power Electronics: Transistor Operation in the kA/cm2 Regime. Scientific Reports, 2017, 7, 44713.	1.6	36
93	Tuning Near-Infrared Absorbing Donor Materials: A Study of Electronic, Optical, and Charge-Transport Properties of aza-BODIPYs. Chemistry of Materials, 2017, 29, 5525-5536.	3.2	31
94	Microcavityâ€Enhanced Semitransparent Electrodes for Oligothiophene Smallâ€Molecule Organic Solar Cells. Advanced Electronic Materials, 2017, 3, 1600518.	2.6	20
95	Small Molecule Near-Infrared Boron Dipyrromethene Donors for Organic Tandem Solar Cells. Journal of the American Chemical Society, 2017, 139, 13636-13639.	6.6	74
96	Polymer:Fullerene Bimolecular Crystals for Nearâ€Infrared Spectroscopic Photodetectors. Advanced Materials, 2017, 29, 1702184.	11.1	150
97	Doping-induced carrier profiles in organic semiconductors determined from capacitive extraction-current transients. Scientific Reports, 2017, 7, 5397.	1.6	12
98	Controlling Tamm Plasmons for Organic Narrowband Near-Infrared Photodetectors. ACS Photonics, 2017, 4, 2228-2234.	3.2	43
99	Electrically Tunable Dye Emission via Microcavity Integrated PDMS Gel Actuator. ACS Applied Materials & Samp; Interfaces, 2017, 9, 29193-29202.	4.0	3
100	Nonlinearity-induced Laguerre-Gauss modes in organic vertical cavity lasers. Applied Physics Letters, 2017, 111, 063303.	1.5	2
101	Nonlinear Contact Effects in Staggered Thin-Film Transistors. Physical Review Applied, 2017, 8, .	1.5	29
102	Azaâ€BODIPY Derivatives Containing BF(CN) and B(CN) ₂ Moieties. ChemPlusChem, 2017, 82, 190-194.	1.3	5
103	Influence of Meso and Nanoscale Structure on the Properties of Highly Efficient Small Molecule Solar Cells. Advanced Energy Materials, 2016, 6, 1501280.	10.2	21
104	Degradation of Sexithiophene Cascade Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1502432.	10.2	16
105	PEDOT:PSS with embedded TiO2 nanoparticles as light trapping electrode for organic photovoltaics. Applied Physics Letters, 2016, 108, .	1.5	32
106	10.4% Efficient triple organic solar cells containing near infrared absorbers. Applied Physics Letters, 2016, 108, .	1.5	32
107	Flexible, light trapping substrates for organic photovoltaics. Applied Physics Letters, 2016, 109, 093301.	1.5	29
108	Reduced contact resistance in top-contact organic field-effect transistors by interface contact doping. Applied Physics Letters, 2016, 108, .	1.5	36

#	Article	IF	CITATIONS
109	Cross-coupled composite-cavity organic microresonators. Applied Physics Letters, 2016, 109, 043302.	1.5	4
110	Operation mechanism of high performance organic permeable base transistors with an insulated and perforated base electrode. Journal of Applied Physics, 2016, 120, .	1.1	20
111	Contact Doping for Vertical Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2016, 26, 768-775.	7.8	72
112	From Fluorine to Fluoreneâ€"A Route to Thermally Stable <i>aza</i> å€BODIPYs for Organic Solar Cell Application. Advanced Electronic Materials, 2016, 2, 1600152.	2.6	26
113	Light trapping for flexible organic photovoltaics. , 2016, , .		1
114	Plasmonâ€Induced Subâ€Bandgap Photodetection with Organic Schottky Diodes. Advanced Functional Materials, 2016, 26, 5741-5747.	7.8	28
115	Optical display film as flexible and light trapping substrate for organic photovoltaics. Optics Express, 2016, 24, A974.	1.7	23
116	Influence of organic ligands on the line shape of the Kondo resonance. Physical Review B, 2016, 93, .	1.1	7
117	Adjustable white-light emission from a photo-structured micro-OLED array. Light: Science and Applications, 2016, 5, e16121-e16121.	7.7	92
118	The impact of molecular weight, air exposure and molecular doping on the charge transport properties and electronic defects in dithienyl-diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymers. Journal of Materials Chemistry C, 2016, 4, 10827-10838.	2.7	11
119	Organic photovoltaics. Nature Reviews Materials, 2016, 1, .	23.3	51
120	Degradation of Flexible, ITO-Free Oligothiophene Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 14709-14716.	4.0	10
121	Efficient flexible organic photovoltaics using silver nanowires and polymer based transparent electrodes. Organic Electronics, 2016, 36, 68-72.	1.4	43
122	Band structure engineering in organic semiconductors. Science, 2016, 352, 1446-1449.	6.0	239
123	Passivation of Molecular nâ€Doping: Exploring the Limits of Air Stability. Advanced Functional Materials, 2016, 26, 3730-3737.	7.8	46
124	Controlling threshold voltage and leakage currents in vertical organic field-effect transistors by inversion mode operation. Applied Physics Letters, 2015, 107, .	1.5	8
125	Controlling morphology: A vertical organic transistor with a self-structured permeable base using the bottom electrode as seed layer. Applied Physics Letters, 2015, 107, 033301.	1.5	13
126	White organic light-emitting diodes with 4 nm metal electrode. Applied Physics Letters, 2015, 107, .	1.5	24

#	Article	IF	CITATIONS
127	Advanced Organic Permeableâ€Base Transistor with Superior Performance. Advanced Materials, 2015, 27, 7734-7739.	11.1	30
128	Vertical organic transistors. Journal of Physics Condensed Matter, 2015, 27, 443003.	0.7	56
129	Materials Meets Concepts in Moleculeâ€Based Electronics. Advanced Functional Materials, 2015, 25, 1933-1954.	7.8	47
130	Transparent Conductive Metal Thinâ€Film Electrodes Structured by Direct Laser Interference Patterning. Advanced Engineering Materials, 2015, 17, 1215-1219.	1.6	17
131	Get it white: color-tunable AC/DC OLEDs. Light: Science and Applications, 2015, 4, e247-e247.	7.7	117
132	Doped Organic Semiconductors: Trapâ€Filling, Impurity Saturation, and Reserve Regimes. Advanced Functional Materials, 2015, 25, 2701-2707.	7.8	138
133	Experimental and theoretical study of phase separation in ZnPc:C60 blends. Organic Electronics, 2015, 27, 183-191.	1.4	5
134	Density of states determination in organic donor-acceptor blend layers enabled by molecular doping. Journal of Applied Physics, 2015, 117, .	1.1	15
135	Color temperature tuning of white organic light-emitting diodes via spatial control of micro-cavity effects based on thin metal strips. Organic Electronics, 2015, 26, 334-339.	1.4	19
136	Hole mobility in thermally evaporated pentacene: Morphological and directional dependence. Applied Physics Letters, 2015, 106, 233301.	1.5	27
137	Impact of mesoscale order on open-circuit voltage in organic solar cells. Nature Materials, 2015, 14, 434-439.	13.3	184
138	Coherent mode coupling in highly efficient top-emitting OLEDs on periodically corrugated substrates. Optics Express, 2014, 22, 7524.	1.7	62
139	Photonic confinement in laterally structured metal-organic microcavities. Applied Physics Letters, 2014, 105, .	1.5	16
140	Molecular doping for control of gate bias stress in organic thin film transistors. Applied Physics Letters, 2014, 104, 013507.	1.5	40
141	Highly efficient organic multi-junction solar cells with a thiophene based donor material. Applied Physics Letters, 2014, 105, .	1.5	75
142	We Want Our Photons Back: Simple Nanostructures for White Organic Lightâ€Emitting Diode Outcoupling. Advanced Functional Materials, 2014, 24, 2553-2559.	7.8	67
143	ITOâ€Free, Smallâ€Molecule Organic Solar Cells on Sprayâ€Coated Copperâ€Nanowireâ€Based Transparent Electrodes. Advanced Energy Materials, 2014, 4, 1300737.	10.2	110
144	Color-stable, ITO-free white organic light-emitting diodes with enhanced efficiency using solution-processed transparent electrodes and optical outcoupling layers. Organic Electronics, 2014, 15, 1028-1034.	1.4	35

#	Article	IF	CITATIONS
145	Increased Openâ€Circuit Voltage of Organic Solar Cells by Reduced Donorâ€Acceptor Interface Area. Advanced Materials, 2014, 26, 3839-3843.	11.1	181
146	Highly efficient p-dopants in amorphous hosts. Organic Electronics, 2014, 15, 365-371.	1.4	35
147	Unusually High Optical Transmission in Ca:Ag Blend Films: Highâ€Performance Top Electrodes for Efficient Organic Solar Cells. Advanced Functional Materials, 2014, 24, 6668-6676.	7.8	37
148	Highly Efficient Color Stable Inverted White Topâ€Emitting OLEDs with Ultraâ€Thin Wetting Layer Top Electrodes. Advanced Optical Materials, 2013, 1, 707-713.	3.6	80
149	Selfâ€passivation of molecular nâ€type doping during air exposure using a highly efficient airâ€instable dopant. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2188-2198.	0.8	16
150	Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells. Journal of Applied Physics, 2013, 113, .	1.1	147
151	Quantification of deep hole-trap filling by molecular p-doping: Dependence on the host material purity. Organic Electronics, 2013, 14, 2348-2352.	1.4	30
152	Electric potential mapping by thickness variation: A new method for model-free mobility determination in organic semiconductor thin films. Organic Electronics, 2013, 14, 3460-3471.	1.4	22
153	Quantifying charge transfer energies at donor–acceptor interfaces in small-molecule solar cells with constrained DFTB and spectroscopic methods. Journal of Physics Condensed Matter, 2013, 25, 473201.	0.7	38
154	Doping of organic semiconductors. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 9-43.	0.8	500
155	Improvement of Transparent Metal Top Electrodes for Organic Solar Cells by Introducing a High Surface Energy Seed Layer. Advanced Energy Materials, 2013, 3, 438-443.	10.2	224
156	Highâ€Performance Vertical Organic Transistors. Small, 2013, 9, 3670-3677.	5.2	77
157	Color in the Corners: ITOâ€Free White OLEDs with Angular Color Stability. Advanced Materials, 2013, 25, 4006-4013.	11.1	241
158	Openâ€Circuit Voltage and Effective Gap of Organic Solar Cells. Advanced Functional Materials, 2013, 23, 5814-5821.	7.8	80
159	Evaluation and Control of the Orientation of Small Molecules for Strongly Absorbing Organic Thin Films. Journal of Physical Chemistry C, 2013, 117, 11600-11609.	1.5	50
160	Achieving High Efficiency and Improved Stability in ITOâ€Free Transparent Organic Lightâ€Emitting Diodes with Conductive Polymer Electrodes. Advanced Functional Materials, 2013, 23, 3763-3769.	7.8	123
161	Eliminating Microâ€Cavity Effects in White Topâ€Emitting OLEDs by Ultraâ€Thin Metallic Top Electrodes. Advanced Optical Materials, 2013, 1, 921-925.	3.6	59
162	Correlation of open-circuit voltage and energy levels in zinc-phthalocyanine: C <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>60</mml:mn></mml:msub></mml:math> bulk heterojunction solar cells with varied mixing ratio. Physical Review B, 2013, 88, .	1.1	71

#	Article	IF	CITATIONS
163	Self-Heating, Bistability, and Thermal Switching in Organic Semiconductors. Physical Review Letters, 2013, 110, 126601.	2.9	39
164	Pentacene Schottky diodes studied by impedance spectroscopy: Doping properties and trap response. Physical Review B, 2013, 88, .	1.1	65
165	Doped organic transistors operating in the inversion and depletion regime. Nature Communications, 2013, 4, 2775.	5.8	164
166	Fermi level shift and doping efficiency in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi>-doped small molecule organic semiconductors: A photoelectron spectroscopy and theoretical study. Physical Review B, 2012, 86, .</mml:math 	1.1	152
167	An all C60 vertical transistor for high frequency and high current density applications. Applied Physics Letters, 2012, 101, .	1.5	42
168	Bidirectional operation of vertical organic triodes. Journal of Applied Physics, 2012, 111, 044507.	1.1	22
169	<i>In-situ</i> conductivity and Seebeck measurements of highly efficient n-dopants in fullerene C60. Applied Physics Letters, 2012, 100, .	1.5	112
170	Flexible organic devices: Towards ubiquitous electronics. , 2012, , .		0
171	2-(2-Methoxyphenyl)-1,3-dimethyl-1 <i>H</i> -benzoimidazol-3-ium Iodide as a New Air-Stable n-Type Dopant for Vacuum-Processed Organic Semiconductor Thin Films. Journal of the American Chemical Society, 2012, 134, 3999-4002.	6.6	145
172	Phase separation analysis of bulk heterojunctions in small-molecule organic solar cells using zinc-phthalocyanine and C60. Physical Review B, 2012, 85, .	1.1	53
173	Self-heating effects in organic semiconductor crossbar structures with small active area. Organic Electronics, 2012, 13, 2461-2468.	1.4	29
174	Correlation of π-Conjugated Oligomer Structure with Film Morphology and Organic Solar Cell Performance. Journal of the American Chemical Society, 2012, 134, 11064-11067.	6.6	260
175	Efficiency and rate of spontaneous emission in organic electroluminescent devices. Physical Review B, 2012, 85, .	1.1	254
176	Phase-locked coherent modes in a patterned metal–organic microcavity. Nature Photonics, 2012, 6, 322-326.	15.6	99
177	Optimum mobility, contact properties, and open-circuit voltage of organic solar cells: A drift-diffusion simulation study. Physical Review B, 2012, 85, .	1.1	174
178	Structural phase transition in pentacene caused by molecular doping and its effect on charge carrier mobility. Organic Electronics, 2012, 13, 58-65.	1.4	105
179	Direct structuring of C60 thin film transistors by photo-lithography under ambient conditions. Organic Electronics, 2012, 13, 506-513.	1.4	28
180	Fluorinated Zinc Phthalocyanine as Donor for Efficient Vacuumâ€Deposited Organic Solar Cells. Advanced Functional Materials, 2012, 22, 405-414.	7.8	70

#	Article	IF	Citations
181	Efficiency Enhancement of Organic Solar Cells by Fabricating Periodic Surface Textures using Direct Laser Interference Patterning. Advanced Materials, 2012, 24, 906-910.	11.1	162
182	Interrelation between Crystal Packing and Smallâ€Molecule Organic Solar Cell Performance. Advanced Materials, 2012, 24, 675-680.	11.1	129
183	Side Chain Variations on a Series of Dicyanovinyl-Terthiophenes: A Photoinduced Absorption Study. Journal of Physical Chemistry A, 2011, 115, 8437-8446.	1.1	29
184	Hybrid optical Tamm states in a planar dielectric microcavity. Physical Review B, 2011, 83, .	1.1	70
185	Dicyanovinyl–Substituted Oligothiophenes: Structureâ€Property Relationships and Application in Vacuumâ€Processed Small Molecule Organic Solar Cells. Advanced Functional Materials, 2011, 21, 897-910.	7.8	246
186	Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Postâ€Treatment for ITOâ€Free Organic Solar Cells. Advanced Functional Materials, 2011, 21, 1076-1081.	7.8	1,218
187	Efficient Organic Tandem Solar Cells based on Small Molecules. Advanced Functional Materials, 2011, 21, 3019-3028.	7.8	216
188	Water and oxygen induced degradation of small molecule organic solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 1268-1277.	3.0	126
189	Zinc phthalocyanine $\hat{a}\in$ " Influence of substrate temperature, film thickness, and kind of substrate on the morphology. Thin Solid Films, 2011, 519, 3939-3945.	0.8	84
190	Quantification of energy loss mechanisms in organic light-emitting diodes. Applied Physics Letters, 2010, 97, .	1.5	302
191	Correlation between morphology and performance of low bandgap oligothiophene:C60 mixed heterojunctions in organic solar cells. Journal of Applied Physics, 2010, 107, .	1.1	55
192	Efficient semitransparent small-molecule organic solar cells. Applied Physics Letters, 2009, 95, .	1.5	37
193	Photoelectron spectroscopy study of systematically varied doping concentrations in an organic semiconductor layer using a molecular p-dopant. Journal of Applied Physics, 2009, 106, .	1.1	128
194	Organic thin film photovoltaic cells based on planar and mixed heterojunctions between fullerene and a low bandgap oligothiophene. Journal of Applied Physics, 2009, 106, .	1.1	40
195	White organic light-emitting diodes with fluorescent tube efficiency. Nature, 2009, 459, 234-238.	13.7	3,172
196	Light trapping in organic solar cells. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2862-2874.	0.8	74
197	Small-molecule solar cells—status and perspectives. Nanotechnology, 2008, 19, 424001.	1.3	269
198	Highly Efficient Organic Devices Based on Electrically Doped Transport Layers. Chemical Reviews, 2007, 107, 1233-1271.	23.0	1,443

#	Article	IF	Citations
199	Highly Conductive Polymer Anodes as Replacements for Inorganic Materials in High-Efficiency Organic Light-Emitting Diodes. Advanced Materials, 2007, 19, 441-444.	11.1	186
200	Efficient Vacuum-Deposited Organic Solar Cells Based on a New Low-Bandgap Oligothiophene and Fullerene C60. Advanced Materials, 2006, 18, 2872-2875.	11.1	317
201	Ultrastable and efficient red organic light emitting diodes with doped transport layers. Applied Physics Letters, 2006, 89, 061111.	1.5	205
202	Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers. Applied Physics Letters, 2005, 86, 244102.	1.5	190
203	Organic p-i-n solar cells. Applied Physics A: Materials Science and Processing, 2004, 79, 1-14.	1.1	308
204	Bulk-heterojunction photovoltaic devices based on donor–acceptor organic small molecule blends. Solar Energy Materials and Solar Cells, 2003, 79, 81-92.	3.0	167
205	Controlledp-type doping of polycrystalline and amorphous organic layers: Self-consistent description of conductivity and field-effect mobility by a microscopic percolation model. Physical Review B, 2001, 64, .	1.1	214
206	Controlled doping of phthalocyanine layers by cosublimation with acceptor molecules: A systematic Seebeck and conductivity study. Applied Physics Letters, 1998, 73, 3202-3204.	1.5	284
207	Hot Carrier Cooling Dynamics in Lead Halide Perovskite Nanomaterials. , 0, , .		0