Karl Leo

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8766723/karl-leo-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

197	15,628	59	122
papers	citations	h-index	g-index
212	17,318 ext. citations	10.8	6.69
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
197	Photomultiplication-Type Organic Photodetectors for Near-Infrared Sensing with High and Bias-Independent Specific Detectivity <i>Advanced Science</i> , 2022 , e2105113	13.6	7
196	Highly efficient modulation doping: A path toward superior organic thermoelectric devices <i>Science Advances</i> , 2022 , 8, eabl9264	14.3	1
195	Narrowband organic photodetectors - towards miniaturized, spectroscopic sensing. <i>Materials Horizons</i> , 2021 ,	14.4	12
194	Roadmap on organicIhorganic hybrid perovskite semiconductors and devices. <i>APL Materials</i> , 2021 , 9, 109202	5.7	28
193	Efficient and low-voltage vertical organic permeable base light-emitting transistors. <i>Nature Materials</i> , 2021 , 20, 1007-1014	27	15
192	Enhanced Charge Selectivity via Anodic-C Layer Reduces Nonradiative Losses in Organic Solar Cells. <i>ACS Applied Materials & Date of the Acs Applied & Date of the </i>	9.5	1
191	Vacuum processed large area doped thin-film crystals: A new approach for high-performance organic electronics. <i>Materials Today Physics</i> , 2021 , 17, 100352	8	7
190	Resonant Enhancement of Cavity Exciton P olaritons via a Fano-Type Interaction in Organic Microcavities. <i>ACS Photonics</i> , 2021 , 8, 1034-1040	6.3	Ο
189	Optical Distance Measurement Based on Induced Nonlinear Photoresponse of High-Performance Organic Near-Infrared Photodetectors. <i>ACS Applied Materials & Applied Mater</i>	9.5	6
188	One-dimensional planar topological laser. <i>Nanophotonics</i> , 2021 , 10, 2459-2465	6.3	2
187	Temperature-Dependent Charge-Transfer-State Absorption and Emission Reveal the Dominant Role of Dynamic Disorder in Organic Solar Cells. <i>Physical Review Applied</i> , 2021 , 15,	4.3	12
186	Band gap engineering in blended organic semiconductor films based on dielectric interactions. <i>Nature Materials</i> , 2021 , 20, 1407-1413	27	4
185	Efficient Thermally Evaporated EcsPbI3 Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2021 , 11, 2100299	21.8	11
184	Reducing Non-Radiative Voltage Losses by Methylation of Push-Pull Molecular Donors in Organic Solar Cells. <i>ChemSusChem</i> , 2021 , 14, 3622-3631	8.3	3
183	Electrical Pumping of Perovskite Diodes: Toward Stimulated Emission. <i>Advanced Science</i> , 2021 , 8, e210 ⁻⁷	16636	10
182	Organic Solar CellsThe Path to Commercial Success. <i>Advanced Energy Materials</i> , 2021 , 11, 2002653	21.8	90
181	Reverse dark current in organic photodetectors and the major role of traps as source of noise. Nature Communications, 2021, 12, 551	17.4	40

180	New charge-transfer states in blends of ZnPC with F8ZnPC. AIP Advances, 2021, 11, 025230	1.5	1
179	Modulation Doping for Threshold Voltage Control in Organic Field-Effect Transistors. <i>ACS Applied Materials & Mate</i>	9.5	5
178	Defect-State Lasing in Photonic Lattices of Metal®rganic Microcavities. <i>Advanced Photonics Research</i> , 2021 , 2, 2000116	1.9	
177	Integrated complementary inverters and ring oscillators based on vertical-channel dual-base organic thin-film transistors. <i>Nature Electronics</i> , 2021 , 4, 588-594	28.4	7
176	Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors. <i>Nature Communications</i> , 2021 , 12, 4259	17.4	11
175	Directed Growth of Dendritic Polymer Networks for Organic Electrochemical Transistors and Artificial Synapses. <i>Advanced Electronic Materials</i> , 2021 , 7, 2100586	6.4	8
174	Reservoir computing with biocompatible organic electrochemical networks for brain-inspired biosignal classification. <i>Science Advances</i> , 2021 , 7,	14.3	13
173	Reduced Intrinsic Non-Radiative Losses Allow Room-Temperature Triplet Emission from Purely Organic Emitters. <i>Advanced Materials</i> , 2021 , 33, e2101844	24	10
172	Solution-processed pseudo-vertical organic transistors based on TIPS-pentacene. <i>Materials Today Energy</i> , 2021 , 21, 100697	7	5
171	Miniaturized VIS-NIR Spectrometers Based on Narrowband and Tunable Transmission Cavity Organic Photodetectors with Ultrahigh Specific Detectivity above 10 Jones. <i>Advanced Materials</i> , 2021 , 33, e2102967	24	16
170	Membrane-Free, Selective Ion Sensing by Combining Organic Electrochemical Transistors and Impedance Analysis of Ionic Diffusion. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 3898-3903	4	4
169	Coherent optical interaction between plasmonic nanoparticles and small organic dye molecules in microcavities. <i>Applied Physics Letters</i> , 2021 , 118, 013301	3.4	O
168	Doped Highly Crystalline Organic Films: Toward High-Performance Organic Electronics. <i>Advanced Science</i> , 2021 , 8, 2003519	13.6	6
167	Stacked Dual-Wavelength Near-Infrared Organic Photodetectors. <i>Advanced Optical Materials</i> , 2021 , 9, 2001784	8.1	13
166	Effects of photon recycling and scattering in high-performance perovskite solar cells <i>Science Advances</i> , 2021 , 7, eabj1363	14.3	1
165	Anodization for Simplified Processing and Efficient Charge Transport in Vertical Organic Field-Effect Transistors. <i>Advanced Functional Materials</i> , 2020 , 30, 2001703	15.6	5
164	Unraveling Structure and Device Operation of Organic Permeable Base Transistors. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000230	6.4	4
163	Surface and mechanical analysis of metallized poly(dimethylsiloxane) gel for varifocal micromirrors. <i>Surface and Interface Analysis</i> , 2020 , 52, 1163-1170	1.5	2

162	Energy Level Engineering in Organic Thin Films by Tailored Halogenation. <i>Advanced Functional Materials</i> , 2020 , 30, 2002987	15.6	4
161	Organic Thin-Film Red-Light Photodiodes with Tunable Spectral Response Via Selective Exciton Activation. <i>ACS Applied Materials & Activation</i> , 12, 13061-13067	9.5	4
160	Modulating the Electronic and Solid-State Structure of Organic Semiconductors by Site-Specific Substitution: The Case of Tetrafluoropentacenes. <i>Chemistry - A European Journal</i> , 2020 , 26, 3420-3434	4.8	9
159	A Review of Vertical Organic Transistors. <i>Advanced Functional Materials</i> , 2020 , 30, 1907113	15.6	49
158	Thermally evaporated methylammonium-free perovskite solar cells. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 7725-7733	7.1	24
157	Controlling and Optimizing Amplified Spontaneous Emission in Perovskites. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 35242-35249	9.5	12
156	Bioinspiration in light harvesting and catalysis. <i>Nature Reviews Materials</i> , 2020 , 5, 828-846	73.3	54
155	Universal Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. <i>ACS Applied Materials & Materials (Materials Acs Applied Materials Acs Applied Materials Acs Applied Materials (Materials Acs Applied Materials Acs Applied Materials Acs Applied Materials (Materials Acs Applied Materials Acs Applied Materials Acs Applied Materials (Materials Acs Applied Materials Acs Applied Materials Acc Applied Materials (Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (Materials Acc Applied Materials (Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (Materials Acc Applied Materials Acc Applied Materials Acc Appli</i>	9.5	4
154	High-Performance Static Induction Transistors Based on Small-Molecule Organic Semiconductors. <i>Advanced Materials Technologies</i> , 2020 , 5, 2000361	6.8	4
153	Controllable coherent absorption of counterpropagating laser beams in organic microcavities. <i>Applied Physics Letters</i> , 2020 , 117, 053301	3.4	2
152	Vertical organic permeable dual-base transistors for logic circuits. <i>Nature Communications</i> , 2020 , 11, 4725	17.4	7
151	Precise patterning of organic semiconductors by reactive ion etching. <i>Organic Electronics</i> , 2020 , 76, 105	3 5 ₹	9
150	Generating semi-metallic conductivity in polymers by laser-driven nanostructural reorganization. <i>Materials Horizons</i> , 2019 , 6, 2143-2151	14.4	10
149	Molecular parameters responsible for thermally activated transport in doped organic semiconductors. <i>Nature Materials</i> , 2019 , 18, 242-248	27	73
148	Intracavity metal contacts for organic microlasers. <i>Journal of Materials Research</i> , 2019 , 34, 571-578	2.5	4
147	Locking excitons in two-dimensional emitting layers for efficient monochrome and white organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 8929-8937	7.1	2
146	Strategic-tuning of radiative excitons for efficient and stable fluorescent white organic light-emitting diodes. <i>Nature Communications</i> , 2019 , 10, 2380	17.4	60
145	Impact of molecular quadrupole moments on the energy levels at organic heterojunctions. <i>Nature Communications</i> , 2019 , 10, 2466	17.4	56

(2018-2019)

144	Effect of H- and J-Aggregation on the Photophysical and Voltage Loss of Boron Dipyrromethene Small Molecules in Vacuum-Deposited Organic Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 2684-2691	6.4	21
143	Vertical Organic Thin-Film Transistors with an Anodized Permeable Base for Very Low Leakage Current. <i>Advanced Materials</i> , 2019 , 31, e1900917	24	11
142	High-Performance Ultra-Short Channel Field-Effect Transistor Using Solution-Processable Colloidal Nanocrystals. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 4025-4031	6.4	11
141	Electrically Stable Organic Permeable Base Transistors for Display Applications. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900576	6.4	12
140	High Electron Affinity Molecular Dopant CN6-CP for Efficient Organic Light-Emitting Diodes. <i>ACS Applied Materials & Diodes & Materials & Diodes & </i>	9.5	17
139	Heteroquinoid Merocyanine Dyes with High Thermal Stability as Absorber Materials in Vacuum-Processed Organic Solar Cells. <i>European Journal of Organic Chemistry</i> , 2019 , 2019, 845-851	3.2	7
138	Ultrathin MoO3 Layers in Composite Metal Electrodes: Improved Optics Allow Highly Efficient Organic Light-Emitting Diodes. <i>Advanced Optical Materials</i> , 2019 , 7, 1801262	8.1	9
137	Insight into doping efficiency of organic semiconductors from the analysis of the density of states in n-doped C and ZnPc. <i>Nature Materials</i> , 2018 , 17, 439-444	27	72
136	Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications. <i>Zeitschrift Fur Physikalische Chemie</i> , 2018 , 232, 1717-1732	3.1	4
135	Elementary steps in electrical doping of organic semiconductors. <i>Nature Communications</i> , 2018 , 9, 1187	2 17.4	133
134	Optically pumped lasing of an electrically active hybrid OLED-microcavity. <i>Applied Physics Letters</i> , 2018 , 112, 113301	3.4	13
133	Optimized coil design for magnetic local positioning systems 2018,		1
132	Analyzing the n-Doping Mechanism of an Air-Stable Small-Molecule Precursor. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 1340-1346	9.5	26
131	Balance of Horizontal and Vertical Charge Transport in Organic Field-Effect Transistors. <i>Physical Review Applied</i> , 2018 , 10,	4.3	15
130	Boron dipyrromethene (BODIPY) with meso-perfluorinated alkyl substituents as near infrared donors in organic solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 18583-18591	13	21
129	A Pulse-Biasing Small-Signal Measurement Technique Enabling 40 MHz Operation of Vertical Organic Transistors. <i>Scientific Reports</i> , 2018 , 8, 7643	4.9	30
128	Optical In-Coupling in Organic Solar Cells. Small Methods, 2018, 2, 1800123	12.8	12
127	Non-Linear Self-Heating in Organic Transistors Reaching High Power Densities. <i>Scientific Reports</i> , 2018 , 8, 9806	4.9	11

126	Three-terminal RGB full-color OLED pixels for ultrahigh density displays. Scientific Reports, 2018, 8, 968-	4 4.9	29
125	Phase-Locked Lasing in 1D and 2D Patterned Metal@rganic Microcavities. <i>Laser and Photonics Reviews</i> , 2018 , 12, 1800054	8.3	2
124	Exciton Diffusion Length and Charge Extraction Yield in Organic Bilayer Solar Cells. <i>Advanced Materials</i> , 2017 , 29, 1604424	24	25
123	Very Small Inverted Hysteresis in Vacuum-Deposited Mixed Organic I horganic Hybrid Perovskite Solar Cells. <i>Energy Technology</i> , 2017 , 5, 1606-1611	3.5	10
122	H-aggregated small molecular nanowires as near infrared absorbers for organic solar cells. <i>Organic Electronics</i> , 2017 , 45, 198-202	3.5	9
121	Influence of aging climate and cathode adhesion on organic solar cell stability. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 168, 1-7	6.4	10
120	Aza-BODIPY dyes with heterocyclic substituents and their derivatives bearing a cyanide co-ligand: NIR donor materials for vacuum-processed solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10696-1	1 07 03	28
119	Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption. <i>Nature Communications</i> , 2017 , 8, 15421	17.4	146
118	3-2: Invited Paper: Color on Demand Color-Tunable OLEDs for Lighting and Displays. <i>Digest of Technical Papers SID International Symposium</i> , 2017 , 48, 5-8	0.5	2
117	Organic Power Electronics: Transistor Operation in the kA/cm Regime. Scientific Reports, 2017, 7, 44713	4.9	31
117	Organic Power Electronics: Transistor Operation in the kA/cm Regime. <i>Scientific Reports</i> , 2017 , 7, 44713 Tuning Near-Infrared Absorbing Donor Materials: A Study of Electronic, Optical, and Charge-Transport Properties of aza-BODIPYs. <i>Chemistry of Materials</i> , 2017 , 29, 5525-5536	9.6	21
	Tuning Near-Infrared Absorbing Donor Materials: A Study of Electronic, Optical, and		
116	Tuning Near-Infrared Absorbing Donor Materials: A Study of Electronic, Optical, and Charge-Transport Properties of aza-BODIPYs. <i>Chemistry of Materials</i> , 2017 , 29, 5525-5536 Microcavity-Enhanced Semitransparent Electrodes for Oligothiophene Small-Molecule Organic	9.6	21
116	Tuning Near-Infrared Absorbing Donor Materials: A Study of Electronic, Optical, and Charge-Transport Properties of aza-BODIPYs. <i>Chemistry of Materials</i> , 2017 , 29, 5525-5536 Microcavity-Enhanced Semitransparent Electrodes for Oligothiophene Small-Molecule Organic Solar Cells. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600518 Small Molecule Near-Infrared Boron Dipyrromethene Donors for Organic Tandem Solar Cells.	9.6	21
116 115 114	Tuning Near-Infrared Absorbing Donor Materials: A Study of Electronic, Optical, and Charge-Transport Properties of aza-BODIPYs. <i>Chemistry of Materials</i> , 2017 , 29, 5525-5536 Microcavity-Enhanced Semitransparent Electrodes for Oligothiophene Small-Molecule Organic Solar Cells. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600518 Small Molecule Near-Infrared Boron Dipyrromethene Donors for Organic Tandem Solar Cells. <i>Journal of the American Chemical Society</i> , 2017 , 139, 13636-13639 Polymer:Fullerene Bimolecular Crystals for Near-Infrared Spectroscopic Photodetectors. <i>Advanced</i>	9.6 6.4 16.4	21 13 56
116 115 114 113	Tuning Near-Infrared Absorbing Donor Materials: A Study of Electronic, Optical, and Charge-Transport Properties of aza-BODIPYs. <i>Chemistry of Materials</i> , 2017 , 29, 5525-5536 Microcavity-Enhanced Semitransparent Electrodes for Oligothiophene Small-Molecule Organic Solar Cells. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600518 Small Molecule Near-Infrared Boron Dipyrromethene Donors for Organic Tandem Solar Cells. <i>Journal of the American Chemical Society</i> , 2017 , 139, 13636-13639 Polymer:Fullerene Bimolecular Crystals for Near-Infrared Spectroscopic Photodetectors. <i>Advanced Materials</i> , 2017 , 29, 1702184 Doping-induced carrier profiles in organic semiconductors determined from capacitive	9.6 6.4 16.4	21 13 56 105
116 115 114 113	Tuning Near-Infrared Absorbing Donor Materials: A Study of Electronic, Optical, and Charge-Transport Properties of aza-BODIPYs. <i>Chemistry of Materials</i> , 2017 , 29, 5525-5536 Microcavity-Enhanced Semitransparent Electrodes for Oligothiophene Small-Molecule Organic Solar Cells. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600518 Small Molecule Near-Infrared Boron Dipyrromethene Donors for Organic Tandem Solar Cells. <i>Journal of the American Chemical Society</i> , 2017 , 139, 13636-13639 Polymer:Fullerene Bimolecular Crystals for Near-Infrared Spectroscopic Photodetectors. <i>Advanced Materials</i> , 2017 , 29, 1702184 Doping-induced carrier profiles in organic semiconductors determined from capacitive extraction-current transients. <i>Scientific Reports</i> , 2017 , 7, 5397 Controlling Tamm Plasmons for Organic Narrowband Near-Infrared Photodetectors. <i>ACS Photonics</i> ,	9.6 6.4 16.4 24 4.9	21 13 56 105

108	Nonlinear Contact Effects in Staggered Thin-Film Transistors. <i>Physical Review Applied</i> , 2017 , 8,	4.3	23
107	Aza-BODIPY Derivatives Containing BF(CN) and B(CN) Moieties. <i>ChemPlusChem</i> , 2017 , 82, 190-194	2.8	4
106	Plasmon-Induced Sub-Bandgap Photodetection with Organic Schottky Diodes. <i>Advanced Functional Materials</i> , 2016 , 26, 5741-5747	15.6	23
105	Optical display film as flexible and light trapping substrate for organic photovoltaics. <i>Optics Express</i> , 2016 , 24, A974-80	3.3	21
104	Influence of organic ligands on the line shape of the Kondo resonance. <i>Physical Review B</i> , 2016 , 93,	3.3	7
103	Adjustable white-light emission from a photo-structured micro-OLED array. <i>Light: Science and Applications</i> , 2016 , 5, e16121	16.7	75
102	The impact of molecular weight, air exposure and molecular doping on the charge transport properties and electronic defects in dithienyl-diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymers. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 10827-10838	7.1	10
101	Degradation of Flexible, ITO-Free Oligothiophene Organic Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 14709-16	9.5	10
100	Efficient flexible organic photovoltaics using silver nanowires and polymer based transparent electrodes. <i>Organic Electronics</i> , 2016 , 36, 68-72	3.5	35
99	Band structure engineering in organic semiconductors. <i>Science</i> , 2016 , 352, 1446-9	33.3	186
98	Passivation of Molecular n-Doping: Exploring the Limits of Air Stability. <i>Advanced Functional Materials</i> , 2016 , 26, 3730-3737	15.6	34
98 97		15.6 21.8	34
	Materials, 2016, 26, 3730-3737 Influence of Meso and Nanoscale Structure on the Properties of Highly Efficient Small Molecule	21.8	
97	Materials, 2016, 26, 3730-3737 Influence of Meso and Nanoscale Structure on the Properties of Highly Efficient Small Molecule Solar Cells. Advanced Energy Materials, 2016, 6, 1501280	21.8	21
97	Influence of Meso and Nanoscale Structure on the Properties of Highly Efficient Small Molecule Solar Cells. Advanced Energy Materials, 2016, 6, 1501280 Degradation of Sexithiophene Cascade Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1502432 PEDOT:PSS with embedded TiO2 nanoparticles as light trapping electrode for organic	21.8 2 21.8	21
97 96 95	Influence of Meso and Nanoscale Structure on the Properties of Highly Efficient Small Molecule Solar Cells. Advanced Energy Materials, 2016, 6, 1501280 Degradation of Sexithiophene Cascade Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1502432 PEDOT:PSS with embedded TiO2 nanoparticles as light trapping electrode for organic photovoltaics. Applied Physics Letters, 2016, 108, 253302 10.4% Efficient triple organic solar cells containing near infrared absorbers. Applied Physics Letters,	21.8 2 21.8	21 13 27
97 96 95 94	Influence of Meso and Nanoscale Structure on the Properties of Highly Efficient Small Molecule Solar Cells. Advanced Energy Materials, 2016, 6, 1501280 Degradation of Sexithiophene Cascade Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1502433 PEDOT:PSS with embedded TiO2 nanoparticles as light trapping electrode for organic photovoltaics. Applied Physics Letters, 2016, 108, 253302 10.4% Efficient triple organic solar cells containing near infrared absorbers. Applied Physics Letters, 2016, 108, 103302	21.8 221.8 3.4 3.4	21 13 27 30

Transparent Conductive Metal Thin-Film Electrodes Structured by Direct Laser Interference

Patterning. Advanced Engineering Materials, 2015, 17, 1215-1219

16

3.5

74

(2013-2014)

72	Increased open-circuit voltage of organic solar cells by reduced donor-acceptor interface area. <i>Advanced Materials</i> , 2014 , 26, 3839-43	24	152
71	Highly efficient p-dopants in amorphous hosts. <i>Organic Electronics</i> , 2014 , 15, 365-371	3.5	32
70	Unusually High Optical Transmission in Ca:Ag Blend Films: High-Performance Top Electrodes for Efficient Organic Solar Cells. <i>Advanced Functional Materials</i> , 2014 , 24, 6668-6676	15.6	34
69	Coherent mode coupling in highly efficient top-emitting OLEDs on periodically corrugated substrates. <i>Optics Express</i> , 2014 , 22, 7524-37	3.3	49
68	Photonic confinement in laterally structured metal-organic microcavities. <i>Applied Physics Letters</i> , 2014 , 105, 051108	3.4	15
67	Molecular doping for control of gate bias stress in organic thin film transistors. <i>Applied Physics Letters</i> , 2014 , 104, 013507	3.4	33
66	Highly efficient organic multi-junction solar cells with a thiophene based donor material. <i>Applied Physics Letters</i> , 2014 , 105, 063306	3.4	70
65	We Want Our Photons Back: Simple Nanostructures for White Organic Light-Emitting Diode Outcoupling. <i>Advanced Functional Materials</i> , 2014 , 24, 2553-2559	15.6	61
64	ITO-Free, Small-Molecule Organic Solar Cells on Spray-Coated Copper-Nanowire-Based Transparent Electrodes. <i>Advanced Energy Materials</i> , 2014 , 4, 1300737	21.8	91
63	Color-stable, ITO-free white organic light-emitting diodes with enhanced efficiency using solution-processed transparent electrodes and optical outcoupling layers. <i>Organic Electronics</i> , 2014 , 15, 1028-1034	3.5	33
62	Highly Efficient Color Stable Inverted White Top-Emitting OLEDs with Ultra-Thin Wetting Layer Top Electrodes. <i>Advanced Optical Materials</i> , 2013 , 1, 707-713	8.1	67
61	Self-passivation of molecular n-type doping during air exposure using a highly efficient air-instable dopant. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2013 , 210, 2188-2198	1.6	15
60	Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells. <i>Journal of Applied Physics</i> , 2013 , 113, 204502	2.5	125
59	Quantification of deep hole-trap filling by molecular p-doping: Dependence on the host material purity. <i>Organic Electronics</i> , 2013 , 14, 2348-2352	3.5	30
58	Electric potential mapping by thickness variation: A new method for model-free mobility determination in organic semiconductor thin films. <i>Organic Electronics</i> , 2013 , 14, 3460-3471	3.5	20
57	Quantifying charge transfer energies at donor-acceptor interfaces in small-molecule solar cells with constrained DFTB and spectroscopic methods. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 473201	1.8	33
56	Doping of organic semiconductors. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2013 , 210, 9-43	1.6	425
55	Improvement of Transparent Metal Top Electrodes for Organic Solar Cells by Introducing a High Surface Energy Seed Layer. <i>Advanced Energy Materials</i> , 2013 , 3, 438-443	21.8	183

54	High-performance vertical organic transistors. <i>Small</i> , 2013 , 9, 3670-7	11	60
53	Color in the corners: ITO-free white OLEDs with angular color stability. <i>Advanced Materials</i> , 2013 , 25, 4006-13	24	212
52	Open-Circuit Voltage and Effective Gap of Organic Solar Cells. <i>Advanced Functional Materials</i> , 2013 , 23, 5814-5821	15.6	68
51	Evaluation and Control of the Orientation of Small Molecules for Strongly Absorbing Organic Thin Films. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 11600-11609	3.8	43
50	Achieving High Efficiency and Improved Stability in ITO-Free Transparent Organic Light-Emitting Diodes with Conductive Polymer Electrodes. <i>Advanced Functional Materials</i> , 2013 , 23, 3763-3769	15.6	112
49	Eliminating Micro-Cavity Effects in White Top-Emitting OLEDs by Ultra-Thin Metallic Top Electrodes. <i>Advanced Optical Materials</i> , 2013 , 1, 921-925	8.1	46
48	Correlation of open-circuit voltage and energy levels in zinc-phthalocyanine: C60 bulk heterojunction solar cells with varied mixing ratio. <i>Physical Review B</i> , 2013 , 88,	3.3	61
47	Self-heating, bistability, and thermal switching in organic semiconductors. <i>Physical Review Letters</i> , 2013 , 110, 126601	7.4	35
46	Pentacene Schottky diodes studied by impedance spectroscopy: Doping properties and trap response. <i>Physical Review B</i> , 2013 , 88,	3.3	59
45	Doped organic transistors operating in the inversion and depletion regime. <i>Nature Communications</i> , 2013 , 4, 2775	17.4	146
45 44		17.4 3·5	146 97
	2013, 4, 2775 Structural phase transition in pentacene caused by molecular doping and its effect on charge		
44	2013, 4, 2775 Structural phase transition in pentacene caused by molecular doping and its effect on charge carrier mobility. <i>Organic Electronics</i> , 2012, 13, 58-65 Direct structuring of C60 thin film transistors by photo-lithography under ambient conditions.	3.5	97
44	2013, 4, 2775 Structural phase transition in pentacene caused by molecular doping and its effect on charge carrier mobility. <i>Organic Electronics</i> , 2012, 13, 58-65 Direct structuring of C60 thin film transistors by photo-lithography under ambient conditions. <i>Organic Electronics</i> , 2012, 13, 506-513 Fluorinated Zinc Phthalocyanine as Donor for Efficient Vacuum-Deposited Organic Solar Cells.	3·5 3·5	97
44 43 42	Structural phase transition in pentacene caused by molecular doping and its effect on charge carrier mobility. <i>Organic Electronics</i> , 2012 , 13, 58-65 Direct structuring of C60 thin film transistors by photo-lithography under ambient conditions. <i>Organic Electronics</i> , 2012 , 13, 506-513 Fluorinated Zinc Phthalocyanine as Donor for Efficient Vacuum-Deposited Organic Solar Cells. <i>Advanced Functional Materials</i> , 2012 , 22, 405-414 Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct	3.5 3.5 15.6	97 23 65
44 43 42 41	Structural phase transition in pentacene caused by molecular doping and its effect on charge carrier mobility. <i>Organic Electronics</i> , 2012 , 13, 58-65 Direct structuring of C60 thin film transistors by photo-lithography under ambient conditions. <i>Organic Electronics</i> , 2012 , 13, 506-513 Fluorinated Zinc Phthalocyanine as Donor for Efficient Vacuum-Deposited Organic Solar Cells. <i>Advanced Functional Materials</i> , 2012 , 22, 405-414 Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning. <i>Advanced Materials</i> , 2012 , 24, 906-10 Interrelation between crystal packing and small-molecule organic solar cell performance. <i>Advanced</i>	3.5 3.5 15.6	97 23 65 145
44 43 42 41 40	Structural phase transition in pentacene caused by molecular doping and its effect on charge carrier mobility. <i>Organic Electronics</i> , 2012 , 13, 58-65 Direct structuring of C60 thin film transistors by photo-lithography under ambient conditions. <i>Organic Electronics</i> , 2012 , 13, 506-513 Fluorinated Zinc Phthalocyanine as Donor for Efficient Vacuum-Deposited Organic Solar Cells. <i>Advanced Functional Materials</i> , 2012 , 22, 405-414 Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning. <i>Advanced Materials</i> , 2012 , 24, 906-10 Interrelation between crystal packing and small-molecule organic solar cell performance. <i>Advanced Materials</i> , 2012 , 24, 675-80 2-(2-Methoxyphenyl)-1,3-dimethyl-1H-benzoimidazol-3-ium iodide as a new air-stable n-type dopant for vacuum-processed organic semiconductor thin films. <i>Journal of the American Chemical</i>	3.5 3.5 15.6 24	97 23 65 145 120

36	Correlation of Econjugated oligomer structure with film morphology and organic solar cell performance. <i>Journal of the American Chemical Society</i> , 2012 , 134, 11064-7	16.4	243
35	Efficiency and rate of spontaneous emission in organic electroluminescent devices. <i>Physical Review B</i> , 2012 , 85,	3.3	198
34	Phase-locked coherent modes in a patterned metal organic microcavity. <i>Nature Photonics</i> , 2012 , 6, 322-2	3<u>3</u>6 .9	88
33	Optimum mobility, contact properties, and open-circuit voltage of organic solar cells: A drift-diffusion simulation study. <i>Physical Review B</i> , 2012 , 85,	3.3	154
32	Fermi level shift and doping efficiency in p-doped small molecule organic semiconductors: A photoelectron spectroscopy and theoretical study. <i>Physical Review B</i> , 2012 , 86,	3.3	135
31	An all C60 vertical transistor for high frequency and high current density applications. <i>Applied Physics Letters</i> , 2012 , 101, 213303	3.4	41
30	Bidirectional operation of vertical organic triodes. <i>Journal of Applied Physics</i> , 2012 , 111, 044507	2.5	19
29	In-situ conductivity and Seebeck measurements of highly efficient n-dopants in fullerene C60. <i>Applied Physics Letters</i> , 2012 , 100, 093304	3.4	105
28	Side chain variations on a series of dicyanovinyl-terthiophenes: a photoinduced absorption study. Journal of Physical Chemistry A, 2011 , 115, 8437-46	2.8	28
27	Hybrid optical Tamm states in a planar dielectric microcavity. <i>Physical Review B</i> , 2011 , 83,	3.3	58
26	DicyanovinylBubstituted Oligothiophenes: Structure-Property Relationships and Application in Vacuum-Processed Small Molecule Organic Solar Cells. <i>Advanced Functional Materials</i> , 2011 , 21, 897-91	0 ^{15.6}	234
25	Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells. <i>Advanced Functional Materials</i> , 2011 , 21, 1076-1081	15.6	1066
24	Efficient Organic Tandem Solar Cells based on Small Molecules. <i>Advanced Functional Materials</i> , 2011 , 21, 3019-3028	15.6	206
23	Water and oxygen induced degradation of small molecule organic solar cells. Solar Energy Materials		118
	and Solar Cells, 2011 , 95, 1268-1277	6.4	
22		2.2	72
22	and Solar Cells, 2011 , 95, 1268-1277 Zinc phthalocyanine Influence of substrate temperature, film thickness, and kind of substrate on		
	and Solar Cells, 2011, 95, 1268-1277 Zinc phthalocyanine Influence of substrate temperature, film thickness, and kind of substrate on the morphology. Thin Solid Films, 2011, 519, 3939-3945 Quantification of energy loss mechanisms in organic light-emitting diodes. Applied Physics Letters,	2.2	72

Nonlinear Behavior of Dendritic Polymer Networks for Reservoir Computing. Advanced Electronic

6.4

Materials,2100330