List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8766723/publications.pdf Version: 2024-02-01

		15466	11899
207	19,047	65	134
papers	citations	h-index	g-index
212	212	212	15353
all docs	docs citations	times ranked	citing authors

KADILEO

#	Article	IF	CITATIONS
1	White organic light-emitting diodes with fluorescent tube efficiency. Nature, 2009, 459, 234-238.	13.7	3,172
2	Highly Efficient Organic Devices Based on Electrically Doped Transport Layers. Chemical Reviews, 2007, 107, 1233-1271.	23.0	1,443
3	Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Postâ€Treatment for ITOâ€Free Organic Solar Cells. Advanced Functional Materials, 2011, 21, 1076-1081.	7.8	1,218
4	Doping of organic semiconductors. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 9-43.	0.8	500
5	Efficient Vacuum-Deposited Organic Solar Cells Based on a New Low-Bandgap Oligothiophene and Fullerene C60. Advanced Materials, 2006, 18, 2872-2875.	11.1	317
6	Organic p-i-n solar cells. Applied Physics A: Materials Science and Processing, 2004, 79, 1-14.	1.1	308
7	Quantification of energy loss mechanisms in organic light-emitting diodes. Applied Physics Letters, 2010, 97, .	1.5	302
8	Organic Solar Cells—The Path to Commercial Success. Advanced Energy Materials, 2021, 11, 2002653.	10.2	287
9	Controlled doping of phthalocyanine layers by cosublimation with acceptor molecules: A systematic Seebeck and conductivity study. Applied Physics Letters, 1998, 73, 3202-3204.	1.5	284
10	Small-molecule solar cells—status and perspectives. Nanotechnology, 2008, 19, 424001.	1.3	269
11	Correlation of π-Conjugated Oligomer Structure with Film Morphology and Organic Solar Cell Performance. Journal of the American Chemical Society, 2012, 134, 11064-11067.	6.6	260
12	Efficiency and rate of spontaneous emission in organic electroluminescent devices. Physical Review B, 2012, 85, .	1.1	254
13	Dicyanovinyl–Substituted Oligothiophenes: Structureâ€Property Relationships and Application in Vacuumâ€Processed Small Molecule Organic Solar Cells. Advanced Functional Materials, 2011, 21, 897-910.	7.8	246
14	Color in the Corners: ITOâ€Free White OLEDs with Angular Color Stability. Advanced Materials, 2013, 25, 4006-4013.	11.1	241
15	Band structure engineering in organic semiconductors. Science, 2016, 352, 1446-1449.	6.0	239
16	Improvement of Transparent Metal Top Electrodes for Organic Solar Cells by Introducing a High Surface Energy Seed Layer. Advanced Energy Materials, 2013, 3, 438-443.	10.2	224
17	Efficient Organic Tandem Solar Cells based on Small Molecules. Advanced Functional Materials, 2011, 21, 3019-3028.	7.8	216
18	Controlledp-type doping of polycrystalline and amorphous organic layers: Self-consistent description of conductivity and field-effect mobility by a microscopic percolation model. Physical Review B, 2001, 64, .	1.1	214

#	Article	IF	CITATIONS
19	Ultrastable and efficient red organic light emitting diodes with doped transport layers. Applied Physics Letters, 2006, 89, 061111.	1.5	205
20	Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption. Nature Communications, 2017, 8, 15421.	5.8	203
21	Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers. Applied Physics Letters, 2005, 86, 244102.	1.5	190
22	Highly Conductive Polymer Anodes as Replacements for Inorganic Materials in High-Efficiency Organic Light-Emitting Diodes. Advanced Materials, 2007, 19, 441-444.	11.1	186
23	Impact of mesoscale order on open-circuit voltage in organic solar cells. Nature Materials, 2015, 14, 434-439.	13.3	184
24	Increased Openâ€Circuit Voltage of Organic Solar Cells by Reduced Donorâ€Acceptor Interface Area. Advanced Materials, 2014, 26, 3839-3843.	11.1	181
25	Elementary steps in electrical doping of organic semiconductors. Nature Communications, 2018, 9, 1182.	5.8	178
26	Optimum mobility, contact properties, and open-circuit voltage of organic solar cells: A drift-diffusion simulation study. Physical Review B, 2012, 85, .	1.1	174
27	Bulk-heterojunction photovoltaic devices based on donor–acceptor organic small molecule blends. Solar Energy Materials and Solar Cells, 2003, 79, 81-92.	3.0	167
28	Doped organic transistors operating in the inversion and depletion regime. Nature Communications, 2013, 4, 2775.	5.8	164
29	Efficiency Enhancement of Organic Solar Cells by Fabricating Periodic Surface Textures using Direct Laser Interference Patterning. Advanced Materials, 2012, 24, 906-910.	11.1	162
30	Fermi level shift and doping efficiency in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi>-doped small molecule organic semiconductors: A photoelectron spectroscopy and theoretical study. Physical Review B, 2012, 86, .</mml:math 	1.1	152
31	Polymer:Fullerene Bimolecular Crystals for Nearâ€Infrared Spectroscopic Photodetectors. Advanced Materials, 2017, 29, 1702184.	11.1	150
32	Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells. Journal of Applied Physics, 2013, 113, .	1.1	147
33	2-(2-Methoxyphenyl)-1,3-dimethyl-1 <i>H</i> -benzoimidazol-3-ium Iodide as a New Air-Stable n-Type Dopant for Vacuum-Processed Organic Semiconductor Thin Films. Journal of the American Chemical Society, 2012, 134, 3999-4002.	6.6	145
34	Doped Organic Semiconductors: Trapâ€Filling, Impurity Saturation, and Reserve Regimes. Advanced Functional Materials, 2015, 25, 2701-2707.	7.8	138
35	Bioinspiration in light harvesting and catalysis. Nature Reviews Materials, 2020, 5, 828-846.	23.3	136
36	Interrelation between Crystal Packing and Smallâ€Molecule Organic Solar Cell Performance. Advanced Materials, 2012, 24, 675-680.	11.1	129

#	Article	IF	CITATIONS
37	Photoelectron spectroscopy study of systematically varied doping concentrations in an organic semiconductor layer using a molecular p-dopant. Journal of Applied Physics, 2009, 106, .	1.1	128
38	Water and oxygen induced degradation of small molecule organic solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 1268-1277.	3.0	126
39	Achieving High Efficiency and Improved Stability in ITOâ€Free Transparent Organic Lightâ€Emitting Diodes with Conductive Polymer Electrodes. Advanced Functional Materials, 2013, 23, 3763-3769.	7.8	123
40	Reverse dark current in organic photodetectors and the major role of traps as source of noise. Nature Communications, 2021, 12, 551.	5.8	122
41	Molecular parameters responsible for thermally activated transport in doped organic semiconductors. Nature Materials, 2019, 18, 242-248.	13.3	121
42	Get it white: color-tunable AC/DC OLEDs. Light: Science and Applications, 2015, 4, e247-e247.	7.7	117
43	<i>In-situ</i> conductivity and Seebeck measurements of highly efficient n-dopants in fullerene C60. Applied Physics Letters, 2012, 100, .	1.5	112
44	ITOâ€Free, Smallâ€Molecule Organic Solar Cells on Spray oated Copperâ€Nanowireâ€Based Transparent Electrodes. Advanced Energy Materials, 2014, 4, 1300737.	10.2	110
45	Structural phase transition in pentacene caused by molecular doping and its effect on charge carrier mobility. Organic Electronics, 2012, 13, 58-65.	1.4	105
46	Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, .	2.2	102
47	Insight into doping efficiency of organic semiconductors from the analysis of the density of states in n-doped C60 and ZnPc. Nature Materials, 2018, 17, 439-444.	13.3	101
48	Impact of molecular quadrupole moments on the energy levels at organic heterojunctions. Nature Communications, 2019, 10, 2466.	5.8	101
49	A Review of Vertical Organic Transistors. Advanced Functional Materials, 2020, 30, 1907113.	7.8	101
50	Phase-locked coherent modes in a patterned metal–organic microcavity. Nature Photonics, 2012, 6, 322-326.	15.6	99
51	Adjustable white-light emission from a photo-structured micro-OLED array. Light: Science and Applications, 2016, 5, e16121-e16121.	7.7	92
52	Zinc phthalocyanine — Influence of substrate temperature, film thickness, and kind of substrate on the morphology. Thin Solid Films, 2011, 519, 3939-3945.	0.8	84
53	Strategic-tuning of radiative excitons for efficient and stable fluorescent white organic light-emitting diodes. Nature Communications, 2019, 10, 2380.	5.8	84
54	Highly Efficient Color Stable Inverted White Topâ€Emitting OLEDs with Ultraâ€Thin Wetting Layer Top Electrodes. Advanced Optical Materials, 2013, 1, 707-713.	3.6	80

#	Article	IF	CITATIONS
55	Open ircuit Voltage and Effective Gap of Organic Solar Cells. Advanced Functional Materials, 2013, 23, 5814-5821.	7.8	80
56	Highâ€Performance Vertical Organic Transistors. Small, 2013, 9, 3670-3677.	5.2	77
57	Narrowband organic photodetectors – towards miniaturized, spectroscopic sensing. Materials Horizons, 2022, 9, 220-251.	6.4	76
58	Highly efficient organic multi-junction solar cells with a thiophene based donor material. Applied Physics Letters, 2014, 105, .	1.5	75
59	Light trapping in organic solar cells. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2862-2874.	0.8	74
60	Small Molecule Near-Infrared Boron Dipyrromethene Donors for Organic Tandem Solar Cells. Journal of the American Chemical Society, 2017, 139, 13636-13639.	6.6	74
61	Contact Doping for Vertical Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2016, 26, 768-775.	7.8	72
62	Reservoir computing with biocompatible organic electrochemical networks for brain-inspired biosignal classification. Science Advances, 2021, 7, eabh0693.	4.7	72
63	Correlation of open-circuit voltage and energy levels in zinc-phthalocyanine: C <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>60</mml:mn></mml:mrow </mml:msub>bulk heterojunction solar cells with varied mixing ratio. Physical Review B. 2013. 88</mml:math 	1.1	71
64	Hybrid optical Tamm states in a planar dielectric microcavity. Physical Review B, 2011, 83, .	1.1	70
65	Fluorinated Zinc Phthalocyanine as Donor for Efficient Vacuumâ€Deposited Organic Solar Cells. Advanced Functional Materials, 2012, 22, 405-414.	7.8	70
66	Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors. Nature Communications, 2021, 12, 4259.	5.8	69
67	We Want Our Photons Back: Simple Nanostructures for White Organic Lightâ€Emitting Diode Outcoupling. Advanced Functional Materials, 2014, 24, 2553-2559.	7.8	67
68	Pentacene Schottky diodes studied by impedance spectroscopy: Doping properties and trap response. Physical Review B, 2013, 88, .	1.1	65
69	Coherent mode coupling in highly efficient top-emitting OLEDs on periodically corrugated substrates. Optics Express, 2014, 22, 7524.	1.7	62
70	Eliminating Microâ€Cavity Effects in White Topâ€Emitting OLEDs by Ultraâ€Thin Metallic Top Electrodes. Advanced Optical Materials, 2013, 1, 921-925.	3.6	59
71	Miniaturized VISâ€NIR Spectrometers Based on Narrowband and Tunable Transmission Cavity Organic Photodetectors with Ultrahigh Specific Detectivity above 10 ¹⁴ Jones. Advanced Materials, 2021, 33, e2102967.	11.1	58
72	Vertical organic transistors. Journal of Physics Condensed Matter, 2015, 27, 443003.	0.7	56

#	Article	IF	CITATIONS
73	Correlation between morphology and performance of low bandgap oligothiophene:C60 mixed heterojunctions in organic solar cells. Journal of Applied Physics, 2010, 107, .	1.1	55
74	Three-terminal RGB full-color OLED pixels for ultrahigh density displays. Scientific Reports, 2018, 8, 9684.	1.6	55
75	Phase separation analysis of bulk heterojunctions in small-molecule organic solar cells using zinc-phthalocyanine and C60. Physical Review B, 2012, 85, .	1.1	53
76	Organic photovoltaics. Nature Reviews Materials, 2016, 1, .	23.3	51
77	Evaluation and Control of the Orientation of Small Molecules for Strongly Absorbing Organic Thin Films. Journal of Physical Chemistry C, 2013, 117, 11600-11609.	1.5	50
78	Materials Meets Concepts in Moleculeâ€Based Electronics. Advanced Functional Materials, 2015, 25, 1933-1954.	7.8	47
79	A Pulse-Biasing Small-Signal Measurement Technique Enabling 40 MHz Operation of Vertical Organic Transistors. Scientific Reports, 2018, 8, 7643.	1.6	47
80	Passivation of Molecular nâ€Doping: Exploring the Limits of Air Stability. Advanced Functional Materials, 2016, 26, 3730-3737.	7.8	46
81	Efficient flexible organic photovoltaics using silver nanowires and polymer based transparent electrodes. Organic Electronics, 2016, 36, 68-72.	1.4	43
82	Controlling Tamm Plasmons for Organic Narrowband Near-Infrared Photodetectors. ACS Photonics, 2017, 4, 2228-2234.	3.2	43
83	An all C60 vertical transistor for high frequency and high current density applications. Applied Physics Letters, 2012, 101, .	1.5	42
84	Thermally evaporated methylammonium-free perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 7725-7733.	2.7	42
85	Organic thin film photovoltaic cells based on planar and mixed heterojunctions between fullerene and a low bandgap oligothiophene. Journal of Applied Physics, 2009, 106, .	1.1	40
86	Molecular doping for control of gate bias stress in organic thin film transistors. Applied Physics Letters, 2014, 104, 013507.	1.5	40
87	Stacked Dualâ€Wavelength Nearâ€Infrared Organic Photodetectors. Advanced Optical Materials, 2021, 9, 2001784.	3.6	40
88	Self-Heating, Bistability, and Thermal Switching in Organic Semiconductors. Physical Review Letters, 2013, 110, 126601.	2.9	39
89	Quantifying charge transfer energies at donor–acceptor interfaces in small-molecule solar cells with constrained DFTB and spectroscopic methods. Journal of Physics Condensed Matter, 2013, 25, 473201.	0.7	38
90	Efficient semitransparent small-molecule organic solar cells. Applied Physics Letters, 2009, 95, .	1.5	37

#	Article	IF	CITATIONS
91	Unusually High Optical Transmission in Ca:Ag Blend Films: Highâ€Performance Top Electrodes for Efficient Organic Solar Cells. Advanced Functional Materials, 2014, 24, 6668-6676.	7.8	37
92	Reduced contact resistance in top-contact organic field-effect transistors by interface contact doping. Applied Physics Letters, 2016, 108, .	1.5	36
93	Exciton Diffusion Length and Charge Extraction Yield in Organic Bilayer Solar Cells. Advanced Materials, 2017, 29, 1604424.	11.1	36
94	Aza-BODIPY dyes with heterocyclic substituents and their derivatives bearing a cyanide co-ligand: NIR donor materials for vacuum-processed solar cells. Journal of Materials Chemistry A, 2017, 5, 10696-10703.	5.2	36
95	Organic Power Electronics: Transistor Operation in the kA/cm2 Regime. Scientific Reports, 2017, 7, 44713.	1.6	36
96	Efficient and low-voltage vertical organic permeable base light-emitting transistors. Nature Materials, 2021, 20, 1007-1014.	13.3	36
97	Color-stable, ITO-free white organic light-emitting diodes with enhanced efficiency using solution-processed transparent electrodes and optical outcoupling layers. Organic Electronics, 2014, 15, 1028-1034.	1.4	35
98	Highly efficient p-dopants in amorphous hosts. Organic Electronics, 2014, 15, 365-371.	1.4	35
99	Efficient Thermally Evaporated γ sPbl ₃ Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100299.	10.2	35
100	Organic bipolar transistors. Nature, 2022, 606, 700-705.	13.7	35
101	Boron dipyrromethene (BODIPY) with <i>meso</i> -perfluorinated alkyl substituents as near infrared donors in organic solar cells. Journal of Materials Chemistry A, 2018, 6, 18583-18591.	5.2	34
102	Controlling and Optimizing Amplified Spontaneous Emission in Perovskites. ACS Applied Materials & Interfaces, 2020, 12, 35242-35249.	4.0	34
103	Photomultiplicationâ€Type Organic Photodetectors for Nearâ€Infrared Sensing with High and Biasâ€Independent Specific Detectivity. Advanced Science, 2022, 9, e2105113.	5.6	33
104	PEDOT:PSS with embedded TiO2 nanoparticles as light trapping electrode for organic photovoltaics. Applied Physics Letters, 2016, 108, .	1.5	32
105	10.4% Efficient triple organic solar cells containing near infrared absorbers. Applied Physics Letters, 2016, 108, .	1.5	32
106	Effect of H- and J-Aggregation on the Photophysical and Voltage Loss of Boron Dipyrromethene Small Molecules in Vacuum-Deposited Organic Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 2684-2691.	2.1	32
107	Tuning Near-Infrared Absorbing Donor Materials: A Study of Electronic, Optical, and Charge-Transport Properties of aza-BODIPYs. Chemistry of Materials, 2017, 29, 5525-5536.	3.2	31
108	Quantification of deep hole-trap filling by molecular p-doping: Dependence on the host material purity. Organic Electronics, 2013, 14, 2348-2352.	1.4	30

#	Article	IF	CITATIONS
109	Advanced Organic Permeableâ€Base Transistor with Superior Performance. Advanced Materials, 2015, 27, 7734-7739.	11.1	30
110	Side Chain Variations on a Series of Dicyanovinyl-Terthiophenes: A Photoinduced Absorption Study. Journal of Physical Chemistry A, 2011, 115, 8437-8446.	1.1	29
111	Self-heating effects in organic semiconductor crossbar structures with small active area. Organic Electronics, 2012, 13, 2461-2468.	1.4	29
112	Flexible, light trapping substrates for organic photovoltaics. Applied Physics Letters, 2016, 109, 093301.	1.5	29
113	Nonlinear Contact Effects in Staggered Thin-Film Transistors. Physical Review Applied, 2017, 8, .	1.5	29
114	High Electron Affinity Molecular Dopant CN6-CP for Efficient Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 11660-11666.	4.0	29
115	Directed Growth of Dendritic Polymer Networks for Organic Electrochemical Transistors and Artificial Synapses. Advanced Electronic Materials, 2021, 7, 2100586.	2.6	29
116	Direct structuring of C60 thin film transistors by photo-lithography under ambient conditions. Organic Electronics, 2012, 13, 506-513.	1.4	28
117	Plasmonâ€Induced Subâ€Bandgap Photodetection with Organic Schottky Diodes. Advanced Functional Materials, 2016, 26, 5741-5747.	7.8	28
118	Analyzing the n-Doping Mechanism of an Air-Stable Small-Molecule Precursor. ACS Applied Materials & Interfaces, 2018, 10, 1340-1346.	4.0	28
119	Integrated complementary inverters and ring oscillators based on vertical-channel dual-base organic thin-film transistors. Nature Electronics, 2021, 4, 588-594.	13.1	28
120	Reduced Intrinsic Nonâ€Radiative Losses Allow Roomâ€Temperature Triplet Emission from Purely Organic Emitters. Advanced Materials, 2021, 33, e2101844.	11.1	28
121	Hole mobility in thermally evaporated pentacene: Morphological and directional dependence. Applied Physics Letters, 2015, 106, 233301.	1.5	27
122	From Fluorine to Fluorene—A Route to Thermally Stable <i>aza</i> â€BODIPYs for Organic Solar Cell Application. Advanced Electronic Materials, 2016, 2, 1600152.	2.6	26
123	Balance of Horizontal and Vertical Charge Transport in Organic Field-Effect Transistors. Physical Review Applied, 2018, 10, .	1.5	25
124	Vertical organic permeable dual-base transistors for logic circuits. Nature Communications, 2020, 11, 4725.	5.8	25
125	Electrical Pumping of Perovskite Diodes: Toward Stimulated Emission. Advanced Science, 2021, 8, e2101663.	5.6	25
126	White organic light-emitting diodes with 4 nm metal electrode. Applied Physics Letters, 2015, 107, .	1.5	24

#	Article	IF	CITATIONS
127	Optical display film as flexible and light trapping substrate for organic photovoltaics. Optics Express, 2016, 24, A974.	1.7	23
128	Photopatternable solid electrolyte for integrable organic electrochemical transistors: operation and hysteresis. Journal of Materials Chemistry C, 2022, 10, 2656-2662.	2.7	23
129	Bidirectional operation of vertical organic triodes. Journal of Applied Physics, 2012, 111, 044507.	1.1	22
130	Electric potential mapping by thickness variation: A new method for model-free mobility determination in organic semiconductor thin films. Organic Electronics, 2013, 14, 3460-3471.	1.4	22
131	Precise patterning of organic semiconductors by reactive ion etching. Organic Electronics, 2020, 76, 105357.	1.4	22
132	Influence of Meso and Nanoscale Structure on the Properties of Highly Efficient Small Molecule Solar Cells. Advanced Energy Materials, 2016, 6, 1501280.	10.2	21
133	Generating semi-metallic conductivity in polymers by laser-driven nanostructural reorganization. Materials Horizons, 2019, 6, 2143-2151.	6.4	21
134	Vertical Organic Thinâ€Film Transistors with an Anodized Permeable Base for Very Low Leakage Current. Advanced Materials, 2019, 31, e1900917.	11.1	21
135	Operation mechanism of high performance organic permeable base transistors with an insulated and perforated base electrode. Journal of Applied Physics, 2016, 120, .	1.1	20
136	Microcavityâ€Enhanced Semitransparent Electrodes for Oligothiophene Smallâ€Molecule Organic Solar Cells. Advanced Electronic Materials, 2017, 3, 1600518.	2.6	20
137	Optically pumped lasing of an electrically active hybrid OLED-microcavity. Applied Physics Letters, 2018, 112, .	1.5	20
138	Color temperature tuning of white organic light-emitting diodes via spatial control of micro-cavity effects based on thin metal strips. Organic Electronics, 2015, 26, 334-339.	1.4	19
139	Optical In oupling in Organic Solar Cells. Small Methods, 2018, 2, 1800123.	4.6	19
140	Non-Linear Self-Heating in Organic Transistors Reaching High Power Densities. Scientific Reports, 2018, 8, 9806.	1.6	19
141	Doped Highly Crystalline Organic Films: Toward Highâ€Performance Organic Electronics. Advanced Science, 2021, 8, 2003519.	5.6	18
142	Transparent Conductive Metal Thinâ€Film Electrodes Structured by Direct Laser Interference Patterning. Advanced Engineering Materials, 2015, 17, 1215-1219.	1.6	17
143	Temperature-Dependent Charge-Transfer-State Absorption and Emission Reveal the Dominant Role of Dynamic Disorder in Organic Solar Cells. Physical Review Applied, 2021, 15, .	1.5	17
144	Band gap engineering in blended organic semiconductor films based on dielectric interactions. Nature Materials, 2021, 20, 1407-1413.	13.3	17

#	Article	IF	CITATIONS
145	Effects of photon recycling and scattering in high-performance perovskite solar cells. Science Advances, 2021, 7, eabj1363.	4.7	17
146	Selfâ€passivation of molecular nâ€type doping during air exposure using a highly efficient airâ€instable dopant. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2188-2198.	0.8	16
147	Photonic confinement in laterally structured metal-organic microcavities. Applied Physics Letters, 2014, 105, .	1.5	16
148	Degradation of Sexithiophene Cascade Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1502432.	10.2	16
149	Modulating the Electronic and Solidâ€5tate Structure of Organic Semiconductors by Siteâ€5pecific Substitution: The Case of Tetrafluoropentacenes. Chemistry - A European Journal, 2020, 26, 3420-3434.	1.7	16
150	Membrane-Free, Selective Ion Sensing by Combining Organic Electrochemical Transistors and Impedance Analysis of Ionic Diffusion. ACS Applied Electronic Materials, 2021, 3, 3898-3903.	2.0	16
151	Density of states determination in organic donor-acceptor blend layers enabled by molecular doping. Journal of Applied Physics, 2015, 117, .	1.1	15
152	Vacuum processed large area doped thin-film crystals: A new approach for high-performance organic electronics. Materials Today Physics, 2021, 17, 100352.	2.9	15
153	Highly efficient modulation doping: A path toward superior organic thermoelectric devices. Science Advances, 2022, 8, eabl9264.	4.7	15
154	Insights into the evaporation behaviour of FAI: material degradation and consequences for perovskite solar cells. Sustainable Energy and Fuels, 2022, 6, 3230-3239.	2.5	15
155	High-Performance Ultra-Short Channel Field-Effect Transistor Using Solution-Processable Colloidal Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 4025-4031.	2.1	14
156	Optical Distance Measurement Based on Induced Nonlinear Photoresponse of High-Performance Organic Near-Infrared Photodetectors. ACS Applied Materials & Interfaces, 2021, 13, 23239-23246.	4.0	14
157	Nonlinear Behavior of Dendritic Polymer Networks for Reservoir Computing. Advanced Electronic Materials, 2022, 8, 2100330.	2.6	14
158	Controlling morphology: A vertical organic transistor with a self-structured permeable base using the bottom electrode as seed layer. Applied Physics Letters, 2015, 107, 033301.	1.5	13
159	Very Small Inverted Hysteresis in Vacuumâ€Deposited Mixed Organic–Inorganic Hybrid Perovskite Solar Cells. Energy Technology, 2017, 5, 1606-1611.	1.8	13
160	Electrically Stable Organic Permeable Base Transistors for Display Applications. Advanced Electronic Materials, 2019, 5, 1900576.	2.6	13
161	Solution-processed pseudo-vertical organic transistors based on TIPS-pentacene. Materials Today Energy, 2021, 21, 100697.	2.5	13
162	H-aggregated small molecular nanowires as near infrared absorbers for organic solar cells. Organic Electronics. 2017. 45. 198-202.	1.4	12

#	Article	IF	CITATIONS
163	Doping-induced carrier profiles in organic semiconductors determined from capacitive extraction-current transients. Scientific Reports, 2017, 7, 5397.	1.6	12
164	Ultrathin MoO3Layers in Composite Metal Electrodes: Improved Optics Allow Highly Efficient Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2019, 7, 1801262.	3.6	12
165	Modulation Doping for Threshold Voltage Control in Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2021, 13, 8664-8671.	4.0	12
166	The impact of molecular weight, air exposure and molecular doping on the charge transport properties and electronic defects in dithienyl-diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymers. Journal of Materials Chemistry C, 2016, 4, 10827-10838.	2.7	11
167	Unraveling Structure and Device Operation of Organic Permeable Base Transistors. Advanced Electronic Materials, 2020, 6, 2000230.	2.6	11
168	Organic Thin-Film Red-Light Photodiodes with Tunable Spectral Response Via Selective Exciton Activation. ACS Applied Materials & amp; Interfaces, 2020, 12, 13061-13067.	4.0	11
169	Degradation of Flexible, ITO-Free Oligothiophene Organic Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 14709-14716.	4.0	10
170	Influence of aging climate and cathode adhesion on organic solar cell stability. Solar Energy Materials and Solar Cells, 2017, 168, 1-7.	3.0	10
171	Heteroquinoid Merocyanine Dyes with High Thermal Stability as Absorber Materials in Vacuumâ€Processed Organic Solar Cells. European Journal of Organic Chemistry, 2019, 2019, 845-851.	1.2	9
172	Energy Level Engineering in Organic Thin Films by Tailored Halogenation. Advanced Functional Materials, 2020, 30, 2002987.	7.8	9
173	Enhanced Charge Selectivity via Anodic-C ₆₀ Layer Reduces Nonradiative Losses in Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 12603-12609.	4.0	9
174	Optical Properties of Perovskiteâ€Organic Multiple Quantum Wells. Advanced Science, 2022, 9, .	5.6	9
175	Controlling threshold voltage and leakage currents in vertical organic field-effect transistors by inversion mode operation. Applied Physics Letters, 2015, 107, .	1.5	8
176	One-dimensional planar topological laser. Nanophotonics, 2021, 10, 2459-2465.	2.9	8
177	Tailoring Organic LEDs for Bidirectional Optogenetic Control via Dual olor Switching. Advanced Functional Materials, 2022, 32, 2110590.	7.8	8
178	Influence of organic ligands on the line shape of the Kondo resonance. Physical Review B, 2016, 93, .	1.1	7
179	Phaseâ€Locked Lasing in 1D and 2D Patterned Metal–Organic Microcavities. Laser and Photonics Reviews, 2018, 12, 1800054.	4.4	6
180	Highâ€Performance Static Induction Transistors Based on Smallâ€Molecule Organic Semiconductors. Advanced Materials Technologies, 2020, 5, 2000361.	3.0	6

#	Article	IF	CITATIONS
181	Anodization for Simplified Processing and Efficient Charge Transport in Vertical Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2020, 30, 2001703.	7.8	6
182	Experimental and theoretical study of phase separation in ZnPc:C60 blends. Organic Electronics, 2015, 27, 183-191.	1.4	5
183	Azaâ€BODIPY Derivatives Containing BF(CN) and B(CN) ₂ Moieties. ChemPlusChem, 2017, 82, 190-194.	1.3	5
184	Intracavity metal contacts for organic microlasers. Journal of Materials Research, 2019, 34, 571-578.	1.2	5
185	Locking excitons in two-dimensional emitting layers for efficient monochrome and white organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 8929-8937.	2.7	5
186	Cross-coupled composite-cavity organic microresonators. Applied Physics Letters, 2016, 109, 043302.	1.5	4
187	Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1717-1732.	1.4	4
188	Universal Limit for Air-Stable Molecular n-Doping in Organic Semiconductors. ACS Applied Materials & Interfaces, 2020, 12, 40566-40571.	4.0	4
189	Controllable coherent absorption of counterpropagating laser beams in organic microcavities. Applied Physics Letters, 2020, 117, 053301.	1.5	4
190	Reducing Nonâ€Radiative Voltage Losses by Methylation of Push–Pull Molecular Donors in Organic Solar Cells. ChemSusChem, 2021, 14, 3622-3631.	3.6	4
191	Electrically Tunable Dye Emission via Microcavity Integrated PDMS Gel Actuator. ACS Applied Materials & Interfaces, 2017, 9, 29193-29202.	4.0	3
192	New charge-transfer states in blends of ZnPC with F8ZnPC. AIP Advances, 2021, 11, 025230.	0.6	3
193	Control of Emission Characteristics of Perovskite Lasers through Optical Feedback. Advanced Photonics Research, 2021, 2, 2100177.	1.7	3
194	Temperature-Dependence of All-Solid-State Organic Electrochemical Transistors. , 2022, , .		3
195	3â€2: <i>Invited Paper</i> : Color on Demand – Colorâ€Tunable OLEDs for Lighting and Displays. Digest of Technical Papers SID International Symposium, 2017, 48, 5-8.	0.1	2
196	Nonlinearity-induced Laguerre-Gauss modes in organic vertical cavity lasers. Applied Physics Letters, 2017, 111, 063303.	1.5	2
197	Surface and mechanical analysis of metallized poly(dimethylsiloxane) gel for varifocal micromirrors. Surface and Interface Analysis, 2020, 52, 1163-1170.	0.8	2
198	Reply to Comment on "Enhanced Charge Selectivity via Anodic-C ₆₀ Layer Reduces Nonradiative Losses in Organic Solar Cells― ACS Applied Materials & Interfaces, 2022, 14, 7527-7530.	4.0	2

#	Article	IF	CITATIONS
199	Light trapping for flexible organic photovoltaics. , 2016, , .		1
200	Optimized coil design for magnetic local positioning systems. , 2018, , .		1
201	Resonant Enhancement of Cavity Exciton–Polaritons via a Fano-Type Interaction in Organic Microcavities. ACS Photonics, 2021, 8, 1034-1040.	3.2	1
202	Coherent optical interaction between plasmonic nanoparticles and small organic dye molecules in microcavities. Applied Physics Letters, 2021, 118, 013301.	1.5	1
203	Catalyzing n-doping. Innovation(China), 2022, 3, 100219.	5.2	1
204	Flexible organic devices: Towards ubiquitous electronics. , 2012, , .		0
205	Defectâ€ S tate Lasing in Photonic Lattices of Metal–Organic Microcavities. Advanced Photonics Research, 2021, 2, 2000116.	1.7	0
206	Hot Carrier Cooling Dynamics in Lead Halide Perovskite Nanomaterials. , 0, , .		0
207	45â€2: <i>Invited Paper:</i> Towards Highâ€Performance Organic Transistors for Display and other Applications. Digest of Technical Papers SID International Symposium, 2022, 53, 565-568.	0.1	0