Yochanan Kushnir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8766396/publications.pdf

Version: 2024-02-01

112 papers 16,744 citations

23567 58 h-index 24258 110 g-index

122 all docs

 $\begin{array}{c} 122 \\ \text{docs citations} \end{array}$

122 times ranked 13270 citing authors

#	Article	IF	CITATIONS
1	Model Projections of an Imminent Transition to a More Arid Climate in Southwestern North America. Science, 2007, 316, 1181-1184.	12.6	1,792
2	Analyses of global sea surface temperature 1856-1991. Journal of Geophysical Research, 1998, 103, 18567-18589.	3.3	1,287
3	An overview of the North Atlantic Oscillation. Geophysical Monograph Series, 2003, , 1-35.	0.1	963
4	Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3241-3246.	7.1	959
5	Interdecadal Variations in North Atlantic Sea Surface Temperature and Associated Atmospheric Conditions. Journal of Climate, 1994, 7, 141-157.	3.2	823
6	Atmospheric GCM Response to Extratropical SST Anomalies: Synthesis and Evaluation*. Journal of Climate, 2002, 15, 2233-2256.	3.2	580
7	Forced and Internal Twentieth-Century SST Trends in the North Atlantic*. Journal of Climate, 2009, 22, 1469-1481.	3.2	493
8	CLIMATE: The North Atlantic Oscillation. Science, 2001, 291, 603-605.	12.6	493
9	Twentieth-Century Sea Surface Temperature Trends. Science, 1997, 275, 957-960.	12.6	443
10	Interannual Variability of Caribbean Rainfall, ENSO, and the Atlantic Ocean*. Journal of Climate, 2000, 13, 297-311.	3.2	441
11	Old World megadroughts and pluvials during the Common Era. Science Advances, 2015, 1, e1500561.	10.3	403
12	Modeling of Tropical Forcing of Persistent Droughts and Pluvials over Western North America: 1856–2000*. Journal of Climate, 2005, 18, 4065-4088.	3.2	376
13	Mechanisms of Hemispherically Symmetric Climate Variability*. Journal of Climate, 2003, 16, 2960-2978.	3.2	330
14	The Relationships between Tropical Pacific and Atlantic SST and Northeast Brazil Monthly Precipitation. Journal of Climate, 1998, 11, 551-562.	3.2	305
15	Have Aerosols Caused the Observed Atlantic Multidecadal Variability?. Journals of the Atmospheric Sciences, 2013, 70, 1135-1144.	1.7	282
16	The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geoscientific Model Development, 2016, 9, 3751-3777.	3.6	282
17	A verification framework for interannual-to-decadal predictions experiments. Climate Dynamics, 2013, 40, 245-272.	3.8	254
18	The ENSO Teleconnection to the Tropical Atlantic Ocean: Contributions of the Remote and Local SSTs to Rainfall Variability in the Tropical Americas*. Journal of Climate, 2001, 14, 4530-4544.	3.2	220

#	Article	IF	Citations
19	Wind-Driven Shifts in the Latitude of the Kuroshio–Oyashio Extension and Generation of SST Anomalies on Decadal Timescales*. Journal of Climate, 2001, 14, 4249-4265.	3.2	206
20	Reduced Space Optimal Interpolation of Historical Marine Sea Level Pressure: 1854–1992*. Journal of Climate, 2000, 13, 2987-3002.	3.2	191
21	Mechanisms of Tropical Atlantic SST Influence on North American Precipitation Variability*. Journal of Climate, 2010, 23, 5610-5628.	3.2	184
22	Blueprints for Medieval hydroclimate. Quaternary Science Reviews, 2007, 26, 2322-2336.	3.0	173
23	Interdecadal Changes in the ENSO Teleconnection to the Caribbean Region and the North Atlantic Oscillation*. Journal of Climate, 2001, 14, 2867-2879.	3.2	165
24	The Recent Increase in North Atlantic Wave Heights*. Journal of Climate, 1997, 10, 2107-2113.	3.2	162
25	Dominant Patterns of Climate Variability in the Atlantic Ocean during the Last 136 Years. Journal of Climate, 1999, 12, 2285-2299.	3.2	156
26	Causes of Atlantic Ocean Climate Variability between 1958 and 1998*. Journal of Climate, 2000, 13, 2845-2862.	3.2	153
27	Equilibrium Atmospheric Response to North Atlantic SST Anomalies. Journal of Climate, 1996, 9, 1208-1220.	3.2	152
28	Low-Frequency Variability in the Northern Hemisphere Winter: Geographical Distribution, Structure and Time-Scale Dependence. Journals of the Atmospheric Sciences, 1989, 46, 3122-3143.	1.7	149
29	An Advective Atmospheric Mixed Layer Model for Ocean Modeling Purposes: Global Simulation of Surface Heat Fluxes. Journal of Climate, 1995, 8, 1951-1964.	3.2	143
30	Variation of the North Atlantic subtropical high western ridge and its implication to Southeastern US summer precipitation. Climate Dynamics, 2012, 39, 1401-1412.	3.8	143
31	Observed Strengthening of the Zonal Sea Surface Temperature Gradient across the Equatorial Pacific Ocean*. Journal of Climate, 2009, 22, 4316-4321.	3.2	141
32	Patterns of coherent decadal and interdecadal climate signals in the Pacific Basin during the 20thcentury. Geophysical Research Letters, 2001, 28, 2069-2072.	4.0	139
33	Causes of Increasing Aridification of the Mediterranean Region in Response to Rising Greenhouse Gases*. Journal of Climate, 2014, 27, 4655-4676.	3.2	137
34	Climate Variability and Change of Mediterranean-Type Climates. Journal of Climate, 2019, 32, 2887-2915.	3.2	132
35	Observed decadal midlatitude and tropical Atlantic climate variability. Geophysical Research Letters, 1998, 25, 3967-3970.	4.0	129
36	Distinguishing the Roles of Natural and Anthropogenically Forced Decadal Climate Variability. Bulletin of the American Meteorological Society, 2011, 92, 141-156.	3.3	125

#	Article	IF	Citations
37	Dynamical and Thermodynamical Causes of Large-Scale Changes in the Hydrological Cycle over North America in Response to Global Warming*. Journal of Climate, 2014, 27, 7921-7948.	3.2	124
38	Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth and Planetary Science Letters, 2015, 412, 235-244.	4.4	120
39	Warming Trend of the Indian Ocean SST and Indian Ocean Dipole from 1880 to 2004*. Journal of Climate, 2008, 21, 2035-2046.	3.2	116
40	Towards operational predictions of the near-term climate. Nature Climate Change, 2019, 9, 94-101.	18.8	116
41	The Physical Basis for Predicting Atlantic Sector Seasonal-to-Interannual Climate Variability*. Journal of Climate, 2006, 19, 5949-5970.	3.2	101
42	Atlantic Climate Variability and Predictability: A CLIVAR Perspective. Journal of Climate, 2006, 19, 5100-5121.	3.2	99
43	Would Advance Knowledge of 1930s SSTs Have Allowed Prediction of the Dust Bowl Drought?*. Journal of Climate, 2008, 21, 3261-3281.	3.2	94
44	Interdecadal changes in eastern Pacific ITCZ variability and its influence on the Atlantic ITCZ. Geophysical Research Letters, 2000, 27, 3687-3690.	4.0	92
45	The General Circulation Model Response to a North Pacific SST Anomaly: Dependence on Time Scale and Pattern Polarity. Journal of Climate, 1992, 5, 271-283.	3.2	91
46	AGCM Precipitation Biases in the Tropical Atlantic. Journal of Climate, 2006, 19, 935-958.	3.2	90
47	The middle Holocene climatic records from Arabia: Reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons. Global and Planetary Change, 2015, 129, 69-91.	3.5	87
48	Initialized Earth System prediction from subseasonal to decadal timescales. Nature Reviews Earth & Environment, 2021, 2, 340-357.	29.7	85
49	Evolution of Interdecadal Variability in Sea Level Pressure, Sea Surface Temperature, and Upper Ocean Temperature over the Pacific Ocean*. Journal of Physical Oceanography, 1999, 29, 1528-1541.	1.7	84
50	Decadal Climate Variability and Predictability: Challenges and Opportunities. Bulletin of the American Meteorological Society, 2018, 99, 479-490.	3.3	82
51	Tropical Oceanic Causes of Interannual to Multidecadal Precipitation Variability in Southeast South America over the Past Century*. Journal of Climate, 2010, 23, 5517-5539.	3.2	81
52	Tropical Pacific Forcing of North American Medieval Megadroughts: Testing the Concept with an Atmosphere Model Forced by Coral-Reconstructed SSTs*. Journal of Climate, 2008, 21, 6175-6190.	3.2	77
53	Dynamical Structure of Extreme Floods in the U.S. Midwest and the United Kingdom. Journal of Hydrometeorology, 2013, 14, 485-504.	1.9	76
54	North Atlantic Multidecadal SST Oscillation: External forcing versus internal variability. Journal of Marine Systems, 2014, 133, 27-38.	2.1	74

#	Article	IF	CITATIONS
55	Classifying North Atlantic Tropical Cyclone Tracks by Mass Moments*. Journal of Climate, 2009, 22, 5481-5494.	3.2	70
56	The relative contributions of radiative forcing and internal climate variability to the late 20th Century winter drying of the Mediterranean region. Climate Dynamics, 2012, 38, 2001-2015.	3.8	69
57	The 1960s Drought and the Subsequent Shift to a Wetter Climate in the Catskill Mountains Region of the New York City Watershed*. Journal of Climate, 2012, 25, 6721-6742.	3.2	67
58	Mediterranean precipitation climatology, seasonal cycle, and trend as simulated by CMIP5. Geophysical Research Letters, 2012, 39, .	4.0	66
59	The 1976/77 transition in precipitation over the Americas and the influence of tropical sea surface temperature. Climate Dynamics, 2005, 24, 721-740.	3.8	64
60	Seasonal climatology and dynamical mechanisms of rainfall in the Caribbean. Climate Dynamics, 2019, 53, 825-846.	3.8	60
61	North Atlantic influence on 19th–20th century rainfall in the Dead Sea watershed, teleconnections with the Sahel, and implication for Holocene climate fluctuations. Quaternary Science Reviews, 2010, 29, 3843-3860.	3.0	57
62	Influence of local and remote SST on North Atlantic tropical cyclone potential intensity. Climate Dynamics, 2013, 40, 1515-1529.	3.8	51
63	On Heat Flux Boundary Conditions for Ocean Models. Journal of Physical Oceanography, 1995, 25, 3219-3230.	1.7	49
64	Relationships between lake-level changes and water and salt budgets in the Dead Sea during extreme aridities in the Eastern Mediterranean. Earth and Planetary Science Letters, 2017, 464, 211-226.	4.4	49
65	Observed and Projected Changes to the Precipitation Annual Cycle. Journal of Climate, 2017, 30, 4983-4995.	3.2	46
66	Europe's winter prospects. Nature, 1999, 398, 289-291.	27.8	45
67	Temperature and surface pressure anomalies in Israel and the North Atlantic Oscillation. Theoretical and Applied Climatology, 2001, 69, 171-177.	2.8	45
68	Impacts of the North Atlantic Warming Hole in Future Climate Projections: Mean Atmospheric Circulation and the North Atlantic Jet. Journal of Climate, 2019, 32, 2673-2689.	3.2	44
69	Mechanisms Governing the Development of the North Atlantic Warming Hole in the CESM-LE Future Climate Simulations. Journal of Climate, 2018, 31, 5927-5946.	3.2	42
70	Looking for the Role of the Ocean in Tropical Atlantic Decadal Climate Variability*. Journal of Climate, 2001, 14, 638-655.	3.2	41
71	Crossâ€"Time Scale Interactions and Rainfall Extreme Events in Southeastern South America for the Austral Summer. Part I: Potential Predictors. Journal of Climate, 2015, 28, 7894-7913.	3.2	38
72	Intensification of the Southern Hemisphere summertime subtropical anticyclones in a warming climate. Geophysical Research Letters, 2013, 40, 5959-5964.	4.0	36

5

#	Article	IF	CITATIONS
73	Natural and Forced North Atlantic Hurricane Potential Intensity Change in CMIP5 Models*. Journal of Climate, 2015, 28, 3926-3942.	3.2	36
74	Evidence for 800years of North Atlantic multi-decadal variability from a Puerto Rican speleothem. Earth and Planetary Science Letters, 2011, 308, 23-28.	4.4	34
75	Commentary on the Syria case: Climate as a contributing factor. Political Geography, 2017, 60, 245-247.	2.5	32
76	A Euro-Mediterranean tree-ring reconstruction of the winter NAO index since 910ÂC.E Climate Dynamics, 2019, 53, 1567-1580.	3.8	32
77	Forecasting Spring Reservoir Inflows in Churchill Falls Basin in Québec, Canada. Journal of Hydrologic Engineering - ASCE, 2008, 13, 426-437.	1.9	31
78	Predicted Chance That Global Warming Will Temporarily Exceed 1.5°C. Geophysical Research Letters, 2018, 45, 11,895.	4.0	31
79	A Census of Atmospheric Variability From Seconds to Decades. Geophysical Research Letters, 2017, 44, 11,201.	4.0	28
80	Mechanisms of Winter Precipitation Variability in the European–Mediterranean Region Associated with the North Atlantic Oscillation. Journal of Climate, 2020, 33, 7179-7196.	3.2	26
81	Formation, Mechanisms, and Predictability of the Aleutian–Icelandic Low Seesaw in Ensemble AGCM Simulations. Journal of Climate, 2005, 18, 1423-1434.	3.2	23
82	Moisture budget analysis of SST-driven decadal Sahel precipitation variability in the twentieth century. Climate Dynamics, 2015, 44, 3303-3321.	3.8	22
83	Understanding Pacific Ocean influence on interannual precipitation variability in the Sahel. Geophysical Research Letters, 2016, 43, 9234-9242.	4.0	22
84	Human adaptation strategies to abrupt climate change in Puerto Rico ca. 3.5 ka. Holocene, 2015, 25, 627-640.	1.7	20
85	Climate Change over the Equatorial Indo-Pacific in Global Warming*. Journal of Climate, 2009, 22, 2678-2693.	3.2	18
86	Reconstruction of Indian summer monsoon winds and precipitation over the past 10,000 years using equatorial pacific SST proxy records. Paleoceanography, 2017, 32, 195-216.	3.0	17
87	Medieval Climate in the Eastern Mediterranean: Instability and Evidence of Solar Forcing. Atmosphere, 2019, 10, 29.	2.3	17
88	The effects of anthropogenic and volcanic aerosols and greenhouse gases on twentieth century Sahel precipitation. Scientific Reports, 2020, 10, 12203.	3.3	17
89	Interannual variability of the early and late-rainy seasons in the Caribbean. Climate Dynamics, 2020, 55, 1563-1583.	3.8	16
90	Impact of the North Atlantic Warming Hole on Sensible Weather. Journal of Climate, 2020, 33, 4255-4271.	3.2	16

#	Article	IF	CITATIONS
91	Timing of El Niño–Related Warming and Indian Summer Monsoon Rainfall. Journal of Climate, 2008, 21, 2711-2719.	3.2	15
92	Analysis of Climatic States and Atmospheric Circulation Patterns That Influence Québec Spring Streamflows. Journal of Hydrologic Engineering - ASCE, 2008, 13, 411-425.	1.9	15
93	Detecting shifts in correlation and variability with application to ENSO-monsoon rainfall relationships. Theoretical and Applied Climatology, 2008, 94, 215-224.	2.8	14
94	Coupled climate model simulations of Mediterranean winter cyclones and large-scale flow patterns. Natural Hazards and Earth System Sciences, 2013, 13, 779-793.	3.6	11
95	Droughts, flooding events, and shifts in water sources and seasonality characterize last interglacial Levant climate. Quaternary Science Reviews, 2020, 248, 106546.	3.0	11
96	Lowâ€frequency climate variability in the Atlantic basin during the 20th century. Atmospheric Science Letters, 2010, 11, 180-185.	1.9	9
97	Comparing Twentieth- and Twenty-First-Century Patterns of Interannual Precipitation Variability over the Western United States and Northern Mexico*. Journal of Hydrometeorology, 2012, 13, 366-378.	1.9	9
98	Winter storm intensity, hazards, and property losses in the New York tristate area. Annals of the New York Academy of Sciences, 2017, 1400, 65-80.	3.8	9
99	Multiscale Variability in North American Summer Maximum Temperatures and Modulations from the North Atlantic Simulated by an AGCM. Journal of Climate, 2018, 31, 2549-2562.	3.2	8
100	Making the Climate Connection: Bridging Scales of Space and Time in the U.S. GLOBEC Program. Oceanography, 2002, 15, 75-86.	1.0	7
101	Regional Signatures of Forced North Atlantic SST Variability: A Limited Role for Aerosols and Greenhouse Gases. Geophysical Research Letters, 2022, 49, .	4.0	7
102	Response to Engel et al. (in press): Lakes or wetlands? A comment on "The middle Holocene climatic records from Arabia: Reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons―by Enzel et al. (2015). Global and Planetary Change, 2017, 148, 268-271.	3.5	6
103	Atlantic Multidecadal Variability as a Modulator of Precipitation Variability in the Southwest United States. Journal of Climate, 2018, 31, 5525-5542.	3.2	6
104	Toward Understanding the Occurrence of Both Wet and Dry Sahel Seasons during El Niño: The Modulating Role of the Global Ocean. Journal of Climate, 2020, 33, 1193-1207.	3.2	6
105	Hindcasts of Tropical Atlantic SST Gradient and South American Precipitation: The Influences of the ENSO Forcing and the Atlantic Preconditioning. Journal of Climate, 2009, 22, 2405-2421.	3.2	5
106	Response to comment on: "Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial―[EPSL, 412, 235–244, 2015]. Earth and Planetary Science Letters, 2015, 427, 306-308.	4.4	5
107	Seasonal prediction of the Caribbean rainfall cycle. Climate Services, 2022, 27, 100309.	2.5	3
108	Mediterranean climate future: an insightful look into the Basin's precipitation response to greenhouse gas forcing. Environmental Research Letters, 2015, 10, 111001.	5.2	2

#	Article	IF	CITATIONS
109	THE CRCES WORKSHOP ON DECADAL CLIMATE VARIABILITY. Bulletin of the American Meteorological Society, 2006, 87, 1223-1226.	3.3	1
110	An Atmospheric Bridge Between the Subpolar and Tropical Atlantic Regions: A Perplexing Asymmetric Teleconnection. Geophysical Research Letters, 2021, 48, .	4.0	1
111	Volcanic rain shift. Nature Climate Change, 2013, 3, 619-620.	18.8	0
112	Changing hydroclimate dynamics and the 19th to 20th century wetting trend in the English Channel region of northwest Europe. Climate Dynamics, 2022, 58, 1539-1553.	3.8	0