Tito Bassani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8766235/publications.pdf Version: 2024-02-01

TITO BASSANI

#	Article	IF	CITATIONS
1	Automatic Diagnosis of Spinal Disorders on Radiographic Images: Leveraging Existing Unstructured Datasets With Natural Language Processing. Global Spine Journal, 2023, 13, 1257-1266.	1.2	6
2	Assessment of trunk muscle activation and intervertebral load in adolescent idiopathic scoliosis by musculoskeletal modelling approach. Journal of Biomechanics, 2021, 114, 110154.	0.9	10
3	The importance of curve severity, type and instrumentation strategy in the surgical correction of adolescent idiopathic scoliosis: an in silico clinical trial on 64 cases. Scientific Reports, 2021, 11, 1799.	1.6	1
4	Accounting for Biomechanical Measures from Musculoskeletal Simulation of Upright Posture Does Not Enhance the Prediction of Curve Progression in Adolescent Idiopathic Scoliosis. Frontiers in Bioengineering and Biotechnology, 2021, 9, 703144.	2.0	2
5	The Simulation of Muscles Forces Increases the Stresses in Lumbar Fixation Implants with Respect to Pure Moment Loading. Frontiers in Bioengineering and Biotechnology, 2021, 9, 745703.	2.0	3
6	Estimating the three-dimensional vertebral orientation from a planar radiograph: Is it feasible?. Journal of Biomechanics, 2020, 102, 109328.	0.9	4
7	What do we know about the biomechanics of the sacroiliac joint and of sacropelvic fixation? A literature review. Medical Engineering and Physics, 2020, 76, 1-12.	0.8	12
8	Statistics in experimental studies on the human spine: Theoretical basics and review of applications. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103862.	1.5	7
9	Spinal Compressive Forces in Adolescent Idiopathic Scoliosis With and Without Carrying Loads: A Musculoskeletal Modeling Study. Frontiers in Bioengineering and Biotechnology, 2020, 8, 159.	2.0	20
10	Transpositions of Intervertebral Centroids in Adolescents Suffering from Idiopathic Scoliosis Optically Diagnosed. Lecture Notes in Computational Vision and Biomechanics, 2020, , 133-141.	0.5	1
11	Physiological variations in the sagittal spine alignment in an asymptomatic elderly population. Spine Journal, 2019, 19, 1840-1849.	0.6	30
12	The Spine: A Strong, Stable, and Flexible Structure with Biomimetics Potential. Biomimetics, 2019, 4, 60.	1.5	25
13	Dependence of lumbar loads on spinopelvic sagittal alignment: An evaluation based on musculoskeletal modeling. PLoS ONE, 2019, 14, e0207997.	1.1	29
14	Artificial intelligence and machine learning in spine research. JOR Spine, 2019, 2, e1044.	1.5	147
15	Is rasterstereography a valid noninvasive method for the screening of juvenile and adolescent idiopathic scoliosis?. European Spine Journal, 2019, 28, 526-535.	1.0	27
16	Surgical treatment of spinal disorders in Parkinson's disease. European Spine Journal, 2018, 27, 101-108.	1.0	18
17	Musculoskeletal Modeling. , 2018, , 257-277.		4
18	Validation of the AnyBody full body musculoskeletal model in computing lumbar spine loads at L4L5 level. Journal of Biomechanics, 2017, 58, 89-96.	0.9	78

Tito Bassani

#	Article	IF	CITATIONS
19	Numerical Prediction of the Mechanical Failure of the Intervertebral Disc under Complex Loading Conditions. Materials, 2017, 10, 31.	1.3	17
20	Semiautomated 3D Spine Reconstruction from Biplanar Radiographic Images: Prediction of Intervertebral Loading in Scoliotic Subjects. Frontiers in Bioengineering and Biotechnology, 2017, 5, 1.	2.0	74
21	MR Imaging and Radiographic Imaging of Degenerative Spine Disorders and Spine Alignment. Magnetic Resonance Imaging Clinics of North America, 2016, 24, 515-522.	0.6	2
22	Planning the Surgical Correction of Spinal Deformities: Toward the Identification of the Biomechanical Principles by Means of Numerical Simulation. Frontiers in Bioengineering and Biotechnology, 2015, 3, 178.	2.0	16
23	Univariate and bivariate symbolic analyses of cardiovascular variability differentiate general anesthesia procedures. Physiological Measurement, 2015, 36, 715-726.	1.2	8
24	Effect of Age on Complexity and Causality of the Cardiovascular Control: Comparison between Model-Based and Model-Free Approaches. PLoS ONE, 2014, 9, e89463.	1.1	86
25	Multiscale Complexity Analysis of the Cardiac Control Identifies Asymptomatic and Symptomatic Patients in Long QT Syndrome Type 1. PLoS ONE, 2014, 9, e93808.	1.1	35
26	Changes in the linear relationship between cardiovascular parameters and neural sympathetic discharge variability before orthostatic syncope. , 2014, , .		0
27	Effects of mechanical stimulation of the feet on gait and cardiovascular autonomic control in Parkinson's disease. Journal of Applied Physiology, 2014, 116, 495-503.	1.2	31
28	Short-term complexity of cardiovascular oscillations during orthostatic change in aging. , 2014, , .		0
29	Assessment of sympathetic baroreflex control during orthostatic challenge before and after prolonged head-down bed rest. , 2014, , .		0
30	Empirical mode decomposition approach to the estimation of cardiac baroreflex sensitivity in patients undergoing coronary artery bypass graft surgery. , 2014, , .		0
31	Comparison between permutation and coarse-grained entropy approaches for the assessment of short-term complexity of heart period variability. , 2014, , .		0
32	Baroreflex response to orthostatic challenge: Effect of aging. , 2014, , .		0
33	Model-free causality analysis of cardiovascular variability detects the amelioration of autonomic control in Parkinson's disease patients undergoing mechanical stimulation. Physiological Measurement, 2014, 35, 1397-1408.	1.2	9
34	Symbolic analysis of heart rate variability differentiates anesthesiological procedures. , 2014, , .		0
35	Symbolic Analysis of Heart Period and QT Interval Variabilities in LQT1 Patients. IFMBE Proceedings, 2014, , 531-534.	0.2	1
36	Characterization of the cardiovascular control during modified head-up tilt test in healthy adult humans. Autonomic Neuroscience: Basic and Clinical, 2013, 179, 166-169.	1.4	13

TITO BASSANI

#	Article	IF	CITATIONS
37	Information domain analysis of the spontaneous baroreflex during pharmacological challenges. Autonomic Neuroscience: Basic and Clinical, 2013, 178, 67-75.	1.4	15
38	K-nearest-neighbor conditional entropy approach for the assessment of the short-term complexity of cardiovascular control. Physiological Measurement, 2013, 34, 17-33.	1.2	52
39	Coherence analysis overestimates the role of baroreflex in governing the interactions between heart period and systolic arterial pressure variabilities during general anesthesia. Autonomic Neuroscience: Basic and Clinical, 2013, 178, 83-88.	1.4	14
40	Refined multiscale entropy analysis of heart period and QT interval variabilities in long QT syndrome type-1 patients. , 2013, 2013, 5554-7.		4
41	Entropy-based complexity of the cardiovascular control in Parkinson disease: Comparison between binning and k-nearest-neighbor approaches. , 2013, 2013, 5045-8.		4
42	Cardiovascular control and time domain Granger causality: insights from selective autonomic blockade. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120161.	1.6	62
43	Model-based causal closed-loop approach to the estimate of baroreflex sensitivity during propofol anesthesia in patients undergoing coronary artery bypass graft. Journal of Applied Physiology, 2013, 115, 1032-1042.	1.2	83
44	Granger causality in cardiovascular variability series: Comparison between model-based and model-free approaches. , 2012, 2012, 3684-7.		3
45	Short-term complexity indexes of heart period and systolic arterial pressure variabilities provide complementary information. Journal of Applied Physiology, 2012, 113, 1810-1820.	1.2	68
46	Testing the involvement of baroreflex during general anesthesia through Granger causality approach. Computers in Biology and Medicine, 2012, 42, 306-312.	3.9	17
47	Model-based assessment of baroreflex and cardiopulmonary couplings during graded head-up tilt. Computers in Biology and Medicine, 2012, 42, 298-305.	3.9	97
48	Accounting for Respiration is Necessary to Reliably Infer Granger Causality From Cardiovascular Variability Series. IEEE Transactions on Biomedical Engineering, 2012, 59, 832-841.	2.5	103
49	Role of respiration in setting causality among cardiovascular variability series. , 2011, 2011, 5923-6.		0
50	Non-stationarities significantly distort short-term spectral, symbolic and entropy heart rate variability indices. Physiological Measurement, 2011, 32, 1775-1786.	1.2	151
51	Causal relationships between heart period and systolic arterial pressure during graded head-up tilt. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R378-R386.	0.9	103
52	Information Transfer through the Spontaneous Baroreflex in Healthy Humans. Methods of Information in Medicine, 2010, 49, 506-510.	0.7	10
53	RR-SAP causality in heart transplant recipients. , 2010, 2010, 3449-52.		0

54 Open loop linear parametric modeling of the qt variability. , 2009, 2009, 6453-6.

2

Tito Bassani

#	Article	IF	CITATIONS
55	Empirical mode decomposition to assess baroreflex gain from spontaneous variability during exercise in humans. , 2009, 2009, 2236-9.		3
56	Multivariate Decomposition of Arterial Blood Pressure Variability for the Assessment of Arterial Control of Circulation. IEEE Transactions on Biomedical Engineering, 2009, 56, 1781-1790.	2.5	28
57	Assessment of cardiovascular regulation through irreversibility analysis of heart period variability: a 24 hours Holter study in healthy and chronic heart failure populations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 1359-1375.	1.6	57
58	ModÃ'le paramétrique multivarié pour l'identification des composantes de pressions diastolique et pulsée. Irbm, 2008, 29, 53-58.	3.7	0
59	Multivariate parametric model for the identification of diastolic pressure and pulse pressure components. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 287-90.	0.5	1