Ranjan Kumar Mohanty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/876602/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-resolution compact numerical method for the system of 2D quasi-linear elliptic boundary value problems and the solution of normal derivatives on an irrational domain with engineering applications. Engineering With Computers, 2022, 38, 539-560.	6.1	8
2	A new high-accuracy method based on off-step cubic polynomial approximations for the solution of coupled Burgers' equations and Burgers–Huxley equation. Engineering With Computers, 2021, 37, 3049-3066.	6.1	7
3	A new high-resolution two-level implicit method based on non-polynomial spline in tension approximations for time-dependent quasi-linear biharmonic equations with engineering applications. Engineering With Computers, 2021, 37, 2073.	6.1	2
4	Cubic spline approximation based on half-step discretization for 2D quasilinear elliptic equations. International Journal for Computational Methods in Engineering Science and Mechanics, 2021, 22, 45-59.	2.1	0
5	Absolute stability of an implicit method based on third-order off-step discretization for the initial-value problem on a graded mesh. Engineering With Computers, 2021, 37, 809-822.	6.1	8
6	On the absolute stability of a two-step third order method on a graded mesh for an initial-value problem. Computational and Applied Mathematics, 2021, 40, 1.	2.2	7
7	High-resolution half-step compact numerical approximation for 2D quasilinear elliptic equations in vector form and the estimates of normal derivatives on an irrational domain. Soft Computing, 2021, 25, 9967-9991.	3.6	6
8	A high accuracy compact semi-constant mesh off-step discretization in exponential form for the solution of non-linear elliptic boundary value problems. Journal of Difference Equations and Applications, 2021, 27, 531-556.	1.1	2
9	A third-order finite difference method on a quasi-variable mesh for nonlinear two point boundary value problems with Robin boundary conditions. Soft Computing, 2021, 25, 12775-12788.	3.6	3
10	A new high accuracy off-step cubic spline approximations on a quasi-variable mesh for the system of nonlinear parabolic equations in one space dimension. International Journal for Computational Methods in Engineering Science and Mechanics, 2021, 22, 123-137.	2.1	3
11	High resolution operator compact implicit half-step approximation for 3D quasi-linear hyperbolic equations and ADI method for 3D telegraphic equation on an irrational domain. Applied Numerical Mathematics, 2021, 172, 446-446.	2.1	1
12	A new two-level implicit scheme based on cubic spline approximations for the 1D time-dependent quasilinear biharmonic problems. Engineering With Computers, 2020, 36, 1485-1498.	6.1	3
13	A new high accuracy method in exponential form based on off-step discretization for non-linear two point boundary value problems. Journal of Difference Equations and Applications, 2020, 26, 171-202.	1.1	10
14	A high-resolution method based on off-step non-polynomial spline approximations for the solution of Burgers-Fisher and coupled nonlinear Burgers' equations. Engineering Computations, 2020, 37, 2785-2818.	1.4	5
15	Fourth-Order Numerical Scheme Based on Half-Step Non-Polynomial Spline Approximations for 1D Quasi-Linear Parabolic Equations. Numerical Analysis and Applications, 2020, 13, 68-81.	0.4	1
16	Highly accurate compact difference scheme for fourth order parabolic equation with Dirichlet and Neumann boundary conditions: Application to good Boussinesq equation. Applied Mathematics and Computation, 2020, 378, 125202.	2.2	7
17	A NEW THIRD ORDER EXPONENTIALLY FITTED DISCRETIZATION FOR THE SOLUTION OF NON-LINEAR TWO POINT BOUNDARY VALUE PROBLEMS ON A GRADED MESH. Journal of Applied Analysis and Computation, 2020, 10, 1741-1770.	0.5	1
18	A New Two-Level Implicit Scheme for the System of 1D Quasi-Linear Parabolic Partial Differential Equations Using Spline in Compression Approximations. Differential Equations and Dynamical Systems, 2019, 27, 327-356.	1.0	4

#	Article	IF	CITATIONS
19	Local meshless method for convection dominated steady and unsteady partial differential equations. Engineering With Computers, 2019, 35, 803-812.	6.1	16
20	Compact half step approximation in exponential form for the system of 2D second-order quasi-linear elliptic partial differential equations. Journal of Difference Equations and Applications, 2019, 25, 716-749.	1.1	9
21	Operator compact exponential approximation for the solution of the system of 2D second order quasilinear elliptic partial differential equations. Advances in Difference Equations, 2019, 2019, .	3.5	9
22	High accuracy two-level implicit compact difference scheme for 1D unsteady biharmonic problem of first kind: application to the generalized Kuramoto–Sivashinsky equation. Journal of Difference Equations and Applications, 2019, 25, 243-261.	1.1	8
23	Two-level implicit high order method based on half-step discretization for 1D unsteady biharmonic problems of first kind. Applied Numerical Mathematics, 2019, 139, 1-14.	2.1	2
24	A class of numerical methods for the solution of fourth-order nonlinear ordinary differential equations on a graded mesh with boundary conditions of first kind. International Journal for Computational Methods in Engineering Science and Mechanics, 2019, 20, 434-450.	2.1	0
25	A new high accuracy cubic spline method based on half-step discretization for the system of 1D non-linear wave equations. Engineering Computations, 2019, 36, 930-957.	1.4	5
26	A class of two- and three-level implicit methods of order two in time and four in space based on half-step discretization for two-dimensional fourth order quasi-linear parabolic equations. Applied Mathematics and Computation, 2019, 352, 68-87.	2.2	0
27	Dynamical Systems, 2019, 27, 141-168.	1.0	1
28	A New Fast Algorithm Based on Half-Step Discretization for 3D Quasilinear Hyperbolic Partial Differential Equations. International Journal of Computational Methods, 2019, 16, 1850090.	1.3	2
29	Compact Difference Scheme with High Accuracy for One-Dimensional Unsteady Quasi-Linear Biharmonic Problem of Second Kind: Application to Physical Problems. Numerical Analysis and Applications, 2018, 11, 45-59.	0.4	1
30	Unconditionally stable high accuracy compact difference schemes for multi-space dimensional vibration problems with simply supported boundary conditions. Applied Mathematical Modelling, 2018, 55, 281-298.	4.2	4
31	A new two-level implicit scheme of order two in time and four in space based on half-step spline in compression approximations for unsteady 1D quasi-linear biharmonic equations. Advances in Difference Equations, 2018, 2018, .	3.5	3
32	Compact-FDM for Mildly Nonlinear Two-Space Dimensional Elliptic BVPs in Polar Coordinate System and Its Convergence Theory. International Journal of Applied and Computational Mathematics, 2017, 3, 255-270.	1.6	1
33	A New Numerical Method Based on Non-Polynomial Spline in Tension Approximations for 1D Quasilinear Hyperbolic Equations on a Variable Mesh. Differential Equations and Dynamical Systems, 2017, 25, 207-222.	1.0	1
34	Numerov type variable mesh approximations for 1D unsteady quasi-linear biharmonic problem: application to Kuramoto-Sivashinsky equation. Numerical Algorithms, 2017, 74, 427-459.	1.9	13
35	High Accuracy Compact Operator Methods for Two-Dimensional Fourth Order Nonlinear Parabolic Partial Differential Equations. Computational Methods in Applied Mathematics, 2017, 17, 617-641.	0.8	6
36	A class of two-level implicit unconditionally stable methods for a fourth order parabolic equation. Applied Mathematics and Computation, 2017, 309, 272-280.	2.2	5

#	ARTICLE	IF	CITATIONS
37	A new spline in compression method of order four in space and two in time based on half-step grid points for the solution of the system of 1D quasi-linear hyperbolic partial differential equations. Advances in Difference Equations, 2017, 2017, .	3.5	3
38	A New Fast Numerical Method Based on Off-Step Discretization for Two-Dimensional Quasilinear Hyperbolic Partial Differential Equations. International Journal of Computational Methods, 2017, 14, 1750031.	1.3	5
39	High-accuracy quasi-variable mesh method for the system of 1D quasi-linear parabolic partial differential equations based on off-step spline in compression approximations. Advances in Difference Equations, 2017, 2017, .	3.5	6
40	Efficient algorithms for fourth and sixth-order two-point non-linear boundary value problems using non-polynomial spline approximations on a geometric mesh. Computational and Applied Mathematics, 2016, 35, 389-404.	1.3	3
41	A new spline in compression technique of order four in space and order two in time for the solution of 1D wave equation in polar coordinates. , 2016, , .		0
42	A class of quasi-variable mesh methods based on off-step discretization for the numerical solution of fourth-order quasi-linear parabolic partial differential equations. Advances in Difference Equations, 2016, 2016, .	3.5	4
43	High accuracy implicit variable mesh methods for numerical study of special types of fourth order non-linear parabolic equations. Applied Mathematics and Computation, 2016, 273, 678-696.	2.2	12
44	High accuracy variable mesh method for nonlinear two-point boundary value problems in divergence form. Applied Mathematics and Computation, 2016, 273, 885-896.	2.2	4
45	A new algorithm based on spline in tension approximation for 1D quasi-linear parabolic equations on a variable mesh. International Journal of Computer Mathematics, 2016, 93, 1771-1786.	1.8	9
46	A new variable mesh method based on non-polynomial spline in compression approximations for 1D quasilinear hyperbolic equations. Advances in Difference Equations, 2015, 2015, .	3.5	4
47	A new compact alternating group explicit iteration method for the solution of nonlinear time-dependent viscous Burgers' equation. Numerical Analysis and Applications, 2015, 8, 314-328.	0.4	0
48	Compact operator method of accuracy two in time and four in space for the numerical solution of coupled viscous Burgers' equations. Applied Mathematics and Computation, 2015, 256, 381-393.	2.2	19
49	On the stability of two new two-step explicit methods for the numerical integration of second order initial value problem on a variable mesh. Applied Mathematics Letters, 2015, 45, 31-36.	2.7	7
50	Operator compact method of accuracy two in time and four in space for the solution of time dependent Burgers-Huxley equation. Numerical Algorithms, 2015, 70, 591-605.	1.9	22
51	A new spline in compression approximation for one space dimensional quasilinear parabolic equations on a variable mesh. Applied Mathematics and Computation, 2015, 260, 82-96.	2.2	10
52	A new high accuracy two-level implicit off-step discretization for the system of three space dimensional quasi-linear parabolic partial differential equations. Computers and Mathematics With Applications, 2015, 69, 1096-1113.	2.7	4
53	Coupled Reduced Alternating Group Explicit Algorithm for Third Order Cubic Spline Method on a Non-uniform Mesh for Nonlinear Singular Two Point Boundary Value Problems. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2015, 85, 71-81.	1.2	2
54	A new coupled reduced alternating group explicit method for nonlinear singular two-point boundary value problems on a variable mesh. Numerical Analysis and Applications, 2015, 8, 55-67.	0.4	2

#	Article	IF	CITATIONS
55	A Single Sweep AGE Algorithm based on Off-Step Discretization for the Solution of Viscous Burgers' Equation on a Variable Mesh. Mathematics in Computer Science, 2015, 9, 85-103.	0.4	0
56	A new high accuracy method for two-dimensional biharmonic equation with nonlinear third derivative terms: application to Navier–Stokes equations of motion. International Journal of Computer Mathematics, 2015, 92, 1574-1590.	1.8	9
57	The Convergence of Geometric Mesh Cubic Spline Finite Difference Scheme for Nonlinear Higher Order Two-Point Boundary Value Problems. International Journal of Computational Mathematics, 2014, 2014, 1-12.	0.8	0
58	New high accuracy super stable alternating direction implicit methods for two and three dimensional hyperbolic damped wave equations. Results in Physics, 2014, 4, 156-163.	4.1	10
59	A new modified group explicit iterative method for the numerical solution of time dependent viscous Burgers' equation. International Journal of Modeling, Simulation, and Scientific Computing, 2014, 05, 1350029.	1.4	4
60	A Novel Numerical Algorithm of Numerov Type for 2D Quasi-linear Elliptic Boundary Value Problems. International Journal for Computational Methods in Engineering Science and Mechanics, 2014, 15, 473-489.	2.1	6
61	A new fast algorithm based on half-step discretization for one space dimensional quasilinear hyperbolic equations. Applied Mathematics and Computation, 2014, 244, 624-641.	2.2	11
62	A New Compact Off-Step Discretization for the System of 2D Quasi-Linear Elliptic Equations on Unequal Mesh. Computational Mathematics and Modeling, 2014, 25, 381-403.	0.5	2
63	A new high order space derivative discretization for 3D quasi-linear hyperbolic partial differential equations. Applied Mathematics and Computation, 2014, 232, 529-541.	2.2	7
64	A new high accuracy non-polynomial tension spline method for the solution of one dimensional wave equation in polar co-ordinates. Journal of the Egyptian Mathematical Society, 2014, 22, 280-285.	1.2	6
65	High accuracy non-polynomial spline in compression method for one-space dimensional quasi-linear hyperbolic equations with significant first order space derivative term. Applied Mathematics and Computation, 2014, 238, 250-265.	2.2	11
66	A new off-step high order approximation for the solution of three-space dimensional nonlinear wave equations. Applied Mathematical Modelling, 2013, 37, 2802-2815.	4.2	22
67	A new three-level implicit cubic spline method for the solution of 1D quasi-linear hyperbolic equations. Computational Mathematics and Modeling, 2013, 24, 452-470.	0.5	3
68	A new high order compact off-step discretization for the system of 3D quasi-linear elliptic partial differential equations. Applied Mathematical Modelling, 2013, 37, 6870-6883.	4.2	23
69	SWAGE algorithm for the cubic spline solution of nonlinear viscous Burgers' equation on a geometric mesh. Results in Physics, 2013, 3, 195-204.	4.1	2
70	High accuracy cubic spline approximation for two dimensional quasi-linear elliptic boundary value problems. Applied Mathematical Modelling, 2013, 37, 155-171.	4.2	24
71	New Nonpolynomial Spline in Compression Method of for the Solution of 1D Wave Equation in Polar Coordinates. Advances in Numerical Analysis, 2013, 2013, 1-8.	0.2	2
72	Geometric Mesh Three-Point Discretization for Fourth-Order Nonlinear Singular Differential Equations in Polar System. Advances in Numerical Analysis, 2013, 2013, 1-10.	0.2	1

#	Article	IF	CITATIONS
73	A New High Accuracy Off-Step Discretisation for the Solution of 2D Nonlinear Triharmonic Equations. East Asian Journal on Applied Mathematics, 2013, 3, 228-245.	0.9	4
74	HIGH ACCURACY ARITHMETIC AVERAGE TYPE DISCRETIZATION FOR THE SOLUTION OF TWO-SPACE DIMENSIONAL NONLINEAR WAVE EQUATIONS. International Journal of Modeling, Simulation, and Scientific Computing, 2012, 03, 1150005.	1.4	7
75	A New Fourth-Order Compact Off-Step Discretization for the System of 2D Nonlinear Elliptic Partial Differential Equations. East Asian Journal on Applied Mathematics, 2012, 2, 59-82.	0.9	6
76	A Novel Numerical Method of for Three-Dimensional Non-Linear Triharmonic Equations. Communications in Computational Physics, 2012, 12, 1417-1433.	1.7	3
77	Application of TAGE Iterative Methods for the Solution of Nonlinear Two Point Boundary Value Problems with Linear Mixed Boundary Conditions on a Non-Uniform Mesh. International Journal for Computational Methods in Engineering Science and Mechanics, 2012, 13, 129-134.	2.1	2
78	A combined approach using coupled reduced alternating group explicit (CRAGE) algorithm and sixth order off-step discretization for the solution of two point nonlinear boundary value problems. Applied Mathematics and Computation, 2012, 219, 248-259.	2.2	8
79	A new high accuracy two-level implicit off-step discretization for the system of two space dimensional quasi-linear parabolic partial differential equations. Applied Mathematics and Computation, 2012, 219, 2680-2697.	2.2	7
80	A Combined Arithmetic Average Discretization and TAGE Iterative Method for Non-linear Two Point Boundary Value Problems with a Source Function in Integral Form. Differential Equations and Dynamical Systems, 2012, 20, 423-440.	1.0	2
81	A Class of Numerical Methods for the Solution of Fourth-Order Ordinary Differential Equations in Polar Coordinates. Advances in Numerical Analysis, 2012, 2012, 1-20.	0.2	6
82	A New High-Order Approximation for the Solution of Two-Space-Dimensional Quasilinear Hyperbolic Equations. Advances in Mathematical Physics, 2011, 2011, 1-22.	0.8	10
83	High accuracy cubic spline finite difference approximation for the solution of one-space dimensional non-linear wave equations. Applied Mathematics and Computation, 2011, 218, 4234-4244.	2.2	27
84	A compact discretization ofO(h4) for two-dimensional nonlinear triharmonic equations. Physica Scripta, 2011, 84, 025002.	2.5	9
85	An O(k ² +kh ² +h <sup& Accurate Two-level Implicit Cubic Spline Method for One Space Dimensional Quasi-linear Parabolic Fouations, American Journal of Computational Mathematics, 2011, 01, 11-17.</sup& 	amp;gt;28	
86	On the use of AGE algorithm with a high accuracy Numerov type variable mesh discretization for 1D non-linear parabolic equations. Numerical Algorithms, 2010, 54, 379-393.	1.9	4
87	A new high accuracy finite difference discretization for the solution of 2D nonlinear biharmonic equations using coupled approach. Numerical Methods for Partial Differential Equations, 2010, 26, 931-944.	3.6	17
88	Singleâ€cell compact finiteâ€difference discretization of order two and four for multidimensional triharmonic problems. Numerical Methods for Partial Differential Equations, 2010, 26, 1420-1426.	3.6	10
89	Application of AGE Method to High Accuracy Variable Mesh Arithmetic Average Type Discretization for 1D Non-linear Parabolic Initial Boundary Value Problems. International Journal for Computational Methods in Engineering Science and Mechanics, 2010, 11, 133-141.	2.1	2
90	New unconditionally stable difference schemes for the solution of multi-dimensional telegraphic equations. International lournal of Computer Mathematics, 2009, 86, 2061-2071.	1.8	107

#	Article	IF	CITATIONS
91	A variable mesh C-SPLAGE method of accuracy for 1D nonlinear parabolic equations. Applied Mathematics and Computation, 2009, 213, 79-91.	2.2	7
92	Alternating group explicit iterative method for nonlinear singular Fredholm Integro-differential boundary value problems. International Journal of Computer Mathematics, 2009, 86, 1645-1656.	1.8	5
93	High-accuracy cubic spline alternating group explicit methods for 1D quasi-linear parabolic equationsâ€. International Journal of Computer Mathematics, 2009, 86, 1556-1571.	1.8	23
94	Three-step BLAGE iterative method for two-dimensional elliptic boundary value problems with singularity. International Journal of Computer Mathematics, 2007, 84, 1613-1624.	1.8	5
95	AnO(k2 +kh2 +h4) arithmetic average discretization for the solution of 1-D nonlinear parabolic equations. Numerical Methods for Partial Differential Equations, 2007, 23, 640-651.	3.6	17
96	An implicit high accuracy variable mesh scheme for 1-D non-linear singular parabolic partial differential equations. Applied Mathematics and Computation, 2007, 186, 219-229.	2.2	21
97	The smart-BLAGE algorithm for singularly perturbed 2D elliptic partial differential equations. Applied Mathematics and Computation, 2007, 190, 321-331.	2.2	8
98	Stability interval for explicit difference schemes for multi-dimensional second-order hyperbolic equations with significant first-order space derivative terms. Applied Mathematics and Computation, 2007, 190, 1683-1690.	2.2	22
99	Application of TACE iterative algorithms to an efficient third order arithmetic average variable mesh discretization for two-point non-linear boundary value problems. Applied Mathematics and Computation, 2006, 172, 148-162.	2.2	22
100	A family of non-uniform mesh tension spline methods for singularly perturbed two-point singular boundary value problems with significant first derivatives. Applied Mathematics and Computation, 2006, 172, 531-544.	2.2	27
101	A new fourth order discretization for singularly perturbed two dimensional non-linear elliptic boundary value problems. Applied Mathematics and Computation, 2006, 175, 1400-1414.	2.2	42
102	A class of non-uniform mesh three point arithmetic average discretization for y″=f(x,y,y′) and the estimates of y′. Applied Mathematics and Computation, 2006, 183, 477-485.	2.2	26
103	A new highly accurate discretization for three-dimensional singularly perturbed nonlinear elliptic partial differential equations. Numerical Methods for Partial Differential Equations, 2006, 22, 1379-1395.	3.6	22

104

#	Article	IF	CITATIONS
109	An non-uniform mesh cubic spline TAGE method for non-linear singular two-point boundary value problems. International Journal of Computer Mathematics, 2005, 82, 1125-1139.	1.8	13
110	Alternating group explicit parallel algorithms for the solution of one-space dimensional non-linear singular parabolic equations using an O(k2 + h4) difference method. International Journal of Computer Mathematics, 2005, 82, 203-218.	1.8	9
111	On the application of the SMAGE parallel algorithms on a non-uniform mesh for the solution of non-linear two-point boundary value problems with singularity. International Journal of Computer Mathematics, 2005, 82, 341-353.	1.8	11
112	A third-order-accurate variable-mesh TAGE iterative method for the numerical solution of two-point non-linear singular boundary value problems. International Journal of Computer Mathematics, 2005, 82, 1261-1273.	1.8	16
113	Convergent spline in tension methods for singularly perturbed two-point singular boundary value problems. International Journal of Computer Mathematics, 2005, 82, 55-66.	1.8	20
114	An operator splitting method for an unconditionally stable difference scheme for a linear hyperbolic equation with variable coefficients in two space dimensions. Applied Mathematics and Computation, 2004, 152, 799-806.	2.2	38
115	An unconditionally stable difference scheme for the one-space-dimensional linear hyperbolic equation. Applied Mathematics Letters, 2004, 17, 101-105.	2.7	96
116	An O(h4) accurate cubic spline TAGE method for nonlinear singular two point boundary value problems. Applied Mathematics and Computation, 2004, 158, 853-868.	2.2	32
117	Fourth-order accurate BLAGE iterative method for the solution of two-dimensional elliptic equations in polar co-ordinates. International Journal of Computer Mathematics, 2004, 81, 1537-1548.	1.8	6
118	Spline in compression method for the numerical solution of singularly perturbed two-point singular boundary-value problems. International Journal of Computer Mathematics, 2004, 81, 615-627.	1.8	21
119	Single-cell discretization ofO(kh2 +h4) for ?u/?n for three-space dimensional mildly quasi-linear parabolic equation. Numerical Methods for Partial Differential Equations, 2003, 19, 327-342.	3.6	2
120	An accurate three spatial grid-point discretization of O(k2+h4) for the numerical solution of one-space dimensional unsteady quasi-linear biharmonic problem of second kind. Applied Mathematics and Computation, 2003, 140, 1-14.	2.2	9
121	The numerical solution of fourth order mildly quasi-linear parabolic initial boundary value problem of second kind. International Journal of Computer Mathematics, 2003, 80, 1147-1159.	1.8	5
122	High Accuracy Difference Formulae For A Fourth Order Quasi-Linear Parabolic Initial Boundary Value Problem Of First Kind. International Journal of Computer Mathematics, 2003, 80, 381-398.	1.8	4
123	A Fourth Order Accurate Cubic Spline Alternating Group Explicit Method For Non-Linear Singular Two Point Boundary Value Problems*. International Journal of Computer Mathematics, 2003, 80, 479-492.	1.8	16
124	A Two Level Implicit Difference Formula of O(k2+h4) for the Numerical Solution of One Space Dimensional Unsteady Quasi-Linear Biharmonic Problem of First Kind. Journal of Computational Methods in Sciences and Engineering, 2003, 3, 193-208.	0.2	2
125	An Unconditionally Stable ADI Method for the Linear Hyperbolic Equation in Three Space Dimensions. International Journal of Computer Mathematics, 2002, 79, 133-142.	1.8	89
126	Alternating Group Explicit Method For The Numerical Solution Of Non-Linear Singular Two-Point Boundary Value Problems Using A Fourth Order Finite Difference Method. International Journal of Computer Mathematics, 2002, 79, 1121-1133.	1.8	21

#	Article	IF	CITATIONS
127	A new discretization method of order four for the numerical solution of one-space dimensional second-order quasi-linear hyperbolic equation. International Journal of Mathematical Education in Science and Technology, 2002, 33, 829-838.	1.4	20
128	Linear stability analysis and fourth-order approximations at first time level for the two space dimensional mildly quasi-linear hyperbolic equations. Numerical Methods for Partial Differential Equations, 2001, 17, 607-618.	3.6	18
129	An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation. Numerical Methods for Partial Differential Equations, 2001, 17, 684-688.	3.6	96
130	Single cell discretization ofO(kh2 +h4) for the estimates of for the two-space dimensional quasi-linear parabolic equation. Numerical Methods for Partial Differential Equations, 2001, 17, 250-261.	3.6	3
131	Fourth-order approximation for the three space dimensional certain mildly quasi-linear hyperbolic equation. Numerical Methods for Partial Differential Equations, 2001, 17, 277-289.	3.6	13
132	Three point discretization of order four and six for (du:dx) of the solution of non-linear singular two point boundary value problem. International Journal of Computer Mathematics, 2001, 78, 123-139.	1.8	6
133	Block iterative methods for the numerical solution of three dimensional mildly non-linear biharmonic problems of first kind. International Journal of Computer Mathematics, 2001, 77, 319-332.	1.8	4
134	A new finite difference discretization of order four for for two-dimensional quasi-linear elliptic boundary value problem. International Journal of Computer Mathematics, 2001, 76, 505-516.	1.8	18
135	Single cell finite difference approximations ofO(kh2 +h4) for ?u/?x for one space dimensional nonlinear parabolic equation. Numerical Methods for Partial Differential Equations, 2000, 16, 408-415.	3.6	27
136	Single-cell fourth-order difference approximations for , and of the three-dimensional quasi-linear elliptic equation. Numerical Methods for Partial Differential Equations, 2000, 16, 417-425.	3.6	9
137	A fourth-order finite difference method for the general one-dimensional nonlinear biharmonic problems of first kind. Journal of Computational and Applied Mathematics, 2000, 114, 275-290.	2.0	18
138	BLOCK ITERATIVE METHODS FOR ONE DIMENSIONAL NONLINEAR BIHARMONIC PROBLEMS ON A PARALLEL COMPUTER*. International Journal of Parallel, Emergent and Distributed Systems, 1999, 13, 239-263.	0.4	7
139	New algorithms for the numerical solution of one dimensional singular biharmonic problems of second kind. International Journal of Computer Mathematics, 1999, 73, 105-124.	1.8	2
140	High accuracy difference schemes for a class of three space dimensional singular parabolic equations with variable coefficients. Journal of Computational and Applied Mathematics, 1998, 89, 39-51.	2.0	6
141	Block iterative methods for the numerical solution of two dimensional nonlinear biharmonic equations. International Journal of Computer Mathematics, 1998, 69, 371-389.	1.8	21
142	Families of accurate discretizations of order two and four for 3-D mildly nonlinear biharmonic problems of second kind. International Journal of Computer Mathematics, 1998, 68, 363-380.	1.8	6
143	Order h4 difference methods for a class of singular two space elliptic boundary value problems. Journal of Computational and Applied Mathematics, 1997, 81, 229-247.	2.0	29
144	Finite difference methods of order two and four for 2-d non-linear biharmonic problems of first kind. International Journal of Computer Mathematics, 1996, 61, 155-163.	1.8	9

#	Article	IF	CITATIONS
145	AnO(K2 +h4) finite difference method for one-space Burger's equation in polar coordinates. Numerical Methods for Partial Differential Equations, 1996, 12, 579-583.	3.6	22
146	Difference methods of order two and four for systems of mildly nonlinear biharmonic problems of the second kind in two space dimensions. Numerical Methods for Partial Differential Equations, 1996, 12, 707-717.	3.6	13
147	High order difference schemes for the system of two space second order nonlinear hyperbolic equations with variable coefficients. Journal of Computational and Applied Mathematics, 1996, 70, 231-243.	2.0	28
148	On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients. Journal of Computational and Applied Mathematics, 1996, 72, 421-431.	2.0	75
149	Technical note: The numerical solution of the system of 3-D nonlinear elliptic equations with mixed derivatives and variable coefficients using fourth-order difference methods. Numerical Methods for Partial Differential Equations, 1995, 11, 187-197.	3.6	24
150	High accuracy difference schemes for a class of singular three space dimensional hyperbolic equations. International Journal of Computer Mathematics, 1995, 56, 185-198.	1.8	18
151	Fourth order operator splitting method for the three space parabolic equation with variable coefficients. International Journal of Computer Mathematics, 1994, 50, 55-64.	1.8	7
152	Fourth order finite difference methods for the system of 2-d nonlinear elliptic equations with variable coefficients. International Journal of Computer Mathematics, 1992, 46, 195-206.	1.8	19
153	Fourth-order finite difference method for 2D parabolic partial differential equations with nonlinear first-derivative terms. Numerical Methods for Partial Differential Equations, 1992, 8, 21-31.	3.6	8
154	Fourth-order finite difference method for three-dimensional elliptic equations with nonlinear first-derivative terms. Numerical Methods for Partial Differential Equations, 1992, 8, 575-591.	3.6	25
155	Fourth-order difference methods for the system of 2D nonlinear elliptic partial differential equations. Numerical Methods for Partial Differential Equations, 1991, 7, 227-244.	3.6	36
156	A higher-order difference method for 3-D parabolic partial differential equations with nonlinear first derivative terms. International Journal of Computer Mathematics, 1991, 38, 101-112.	1.8	3
157	The numerical solution of the two-dimensional unsteady navier-stokes equations using fourth-order difference method. International Journal of Computer Mathematics, 1991, 39, 125-134.	1.8	4
158	A fourth order difference method for the one-dimensional general quasilinear parabolic partial differential equation. Numerical Methods for Partial Differential Equations, 1990, 6, 311-319.	3.6	41
159	High order difference methods for system of id nonlinear parabolic partial differential equations. International Journal of Computer Mathematics, 1990, 37, 105-112.	1.8	24
160	A fourth-order difference method for elliptic equations with nonlinear first derivative terms. Numerical Methods for Partial Differential Equations, 1989, 5, 87-95.	3.6	29