Liu Ting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8765961/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synergistic Coupling between Li _{6.75} La ₃ Zr _{1.75} Ta _{0.25} O ₁₂ and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes, Journal of the American Chemical Society, 2017, 139, 13779-13785.	6.6	698
2	Lithium-Salt-Rich PEO/Li _{0.3} La _{0.557} TiO ₃ Interpenetrating Composite Electrolyte with Three-Dimensional Ceramic Nano-Backbone for All-Solid-State Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 24791-24798.	4.0	230
3	Oxide Electrolytes for Lithium Batteries. Journal of the American Ceramic Society, 2015, 98, 3603-3623.	1.9	226
4	High-Conductivity Argyrodite Li ₆ PS ₅ Cl Solid Electrolytes Prepared via Optimized Sintering Processes for All-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 42279-42285.	4.0	170
5	Achieving high capacity in bulk-type solid-state lithium ion battery based on Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 electrolyte: Interfacial resistance. Journal of Power Sources, 2016, 324, 349-357.	4.0	154
6	Addressing the Interface Issues in All-Solid-State Bulk-Type Lithium Ion Battery via an All-Composite Approach. ACS Applied Materials & Interfaces, 2017, 9, 9654-9661.	4.0	139
7	Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification. Journal of Materials Chemistry A, 2018, 6, 4649-4657.	5.2	98
8	Chemical compatibility between garnet-like solid state electrolyte Li6.75La3Zr1.75Ta0.25O12 and major commercial lithium battery cathode materials. Journal of Materiomics, 2016, 2, 256-264.	2.8	96
9	Atomically Intimate Contact between Solid Electrolytes and Electrodes for Li Batteries. Matter, 2019, 1, 1001-1016.	5.0	52
10	Garnet-type oxide electrolyte with novel porous-dense bilayer configuration for rechargeable all-solid-state lithium batteries. Ionics, 2017, 23, 2521-2527.	1.2	50
11	High Capacity, Superior Cyclic Performances in All-Solid-State Lithium-Ion Batteries Based on 78Li ₂ S-22P ₂ S ₅ Glass-Ceramic Electrolytes Prepared via Simple Heat Treatment. ACS Applied Materials & Interfaces, 2017, 9, 28542-28548.	4.0	49
12	High-performance all-solid-state lithium–sulfur batteries with sulfur/carbon nano-hybrids in a composite cathode. Journal of Materials Chemistry A, 2018, 6, 23345-23356.	5.2	48
13	High Capacity and Superior Cyclic Performances of All-Solid-State Lithium Batteries Enabled by a Glass–Ceramics Solo. ACS Applied Materials & Interfaces, 2018, 10, 10029-10035.	4.0	37
14	Single-atom-layer traps in a solid electrolyte for lithium batteries. Nature Communications, 2020, 11, 1828.	5.8	35
15	Nanoarchitectured Co3O4/reduced graphene oxide as anode material for lithium-ion batteries with enhanced cycling stability. Ionics, 2019, 25, 5779-5786.	1.2	19
16	Ultrathin Nâ€doped carbonâ€coated TiO ₂ coaxial nanofibers as anodes for lithium ion batteries. Journal of the American Ceramic Society, 2017, 100, 2939-2947.	1.9	14