Xiping Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8765901/publications.pdf Version: 2024-02-01

XIDING LI

#	Article	IF	CITATIONS
1	Temperatureâ€Dependent Electromagnetic Microwave Absorbing Characteristics of Stretchable Polyurethane Composite Foams with Ultrawide Bandwidth. Advanced Engineering Materials, 2022, 24, 2101489.	3.5	14
2	Ultrahigh and Tunable Electromagnetic Interference Shielding Performance of PVDF Composite Induced by Nano-Micro Cellular Structure. Polymers, 2022, 14, 234.	4.5	9
3	Effect of surface topography on injection joining Ti alloy for improved bonding strength of metal-polymer. Surface and Coatings Technology, 2022, 433, 128132.	4.8	7
4	Rheological/crystallization behavior of PP/graphite nanosheet composites and performance of microcellular foaming plastics. Composites Communications, 2022, 32, 101133.	6.3	5
5	Effect of microstructure induced by microcellular injection molding on electromagnetic interference shielding properties. Journal of Applied Polymer Science, 2021, 138, 50532.	2.6	9
6	Highly stretchable and self-foaming polyurethane composite skeleton with thermally tunable microwave absorption properties. Nanotechnology, 2021, 32, 225703.	2.6	11
7	Super-high bonding strength of polyphenylene sulfide-aluminum alloy composite structure achieved by facile molding methods. Composites Part B: Engineering, 2021, 224, 109204.	12.0	17
8	Stretchable polyurethane composite foam triboelectric nanogenerator with tunable microwave absorption properties at elevated temperature. Nano Energy, 2021, 89, 106397.	16.0	37
9	Preparation of high-expansion open-cell polylactic acid foam with superior oil-water separation performance. International Journal of Biological Macromolecules, 2021, 193, 1059-1067.	7.5	16
10	Experimental and numerical study on the tensile properties of Tâ€joints with low Zâ€pin volume density. Polymer Composites, 2020, 41, 258-270.	4.6	14
11	Flexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiation. Journal of Materials Chemistry C, 2020, 8, 500-509.	5.5	76
12	Effect of metal surface state on injection joining strength of aluminum-rubber composite part. Journal of Manufacturing Processes, 2020, 49, 365-372.	5.9	10
13	Enhanced thermal properties of polyamide 6, 6 composite/aluminum hybrid via injection joining strategy. International Communications in Heat and Mass Transfer, 2020, 116, 104696.	5.6	9
14	Highly Compressible Polymer Composite Foams with Thermal Heating-Boosted Electromagnetic Wave Absorption Abilities. ACS Applied Materials & Interfaces, 2020, 12, 50793-50802.	8.0	47
15	Highly enhanced joint strength of direct-injection-moulded polyphenylene sulphide-magnesium composite by PEO coated interface. Surface and Coatings Technology, 2020, 404, 126565.	4.8	8
16	Surface nanostructure and wettability inducing high bonding strength of polyphenylene sulfide-aluminum composite structure. Applied Surface Science, 2020, 515, 145996.	6.1	36
17	Capacities of Zâ€pinning in improving the bending performance of composite Tâ€joints. Polymer Composites, 2020, 41, 2125-2133.	4.6	6
18	Flexible and high performance of n-type thermoelectric PVDF composite film induced by nickel nanowires. Materials and Design, 2020, 188, 108496.	7.0	23

Xiping Li

#	Article	IF	CITATIONS
19	Viscoelastic and Magnetically Aligned Flaky Fe-Based Magnetorheological Elastomer Film for Wide-Bandwidth Electromagnetic Wave Absorption. Industrial & Engineering Chemistry Research, 2020, 59, 3425-3437.	3.7	26
20	Advances in Polymer Technology Application of Pareto-Based Genetic Algorithm in Determining Layout of Heating Rods for a Plastic Injection Mold. Advances in Polymer Technology, 2020, 2020, 1-7.	1.7	0
21	Flexible PVDF/CNTs/Ni@CNTs composite films possessing excellent electromagnetic interference shielding and mechanical properties under heat treatment. Carbon, 2019, 155, 34-43.	10.3	99
22	Improving the strength of injection molded aluminum/polyphenylene sulfide lap joints dependence on surface microstructure and composition. Materials and Design, 2019, 179, 107875.	7.0	49
23	Aluminum/polypropylene composites produced through injection molding. Journal of Materials Processing Technology, 2018, 255, 635-643.	6.3	35
24	Surface topography induced high injection joining strength of polymer-metal composite and fracture mechanism. Composite Structures, 2018, 184, 545-553.	5.8	51
25	Quick Heat Dissipation in Absorption-Dominated Microwave Shielding Properties of Flexible Poly(vinylidene fluoride)/Carbon Nanotube/Co Composite Films with Anisotropy-Shaped Co (Flowers) Tj ETQq1 1	0 <i>.ਡ.8</i> 4314	l r gB T /Oved
26	Fiber orientation in melt confluent process for reinforced injection molded part. International Journal of Advanced Manufacturing Technology, 2017, 90, 1457-1463.	3.0	11
27	Enhancing the joining strength of injection-molded polymer-metal hybrids by rapid heating and cooling. Journal of Materials Processing Technology, 2017, 249, 386-393.	6.3	46
28	Design of motion control system of butt girth welds scanner for oil and gas pipeline. , 2011, , .		0
29	Multi-Objective Optimization of the Heating Rods Layout for Rapid Electrical Heating Cycle Injection Mold. Journal of Mechanical Design, Transactions of the ASME, 2010, 132, .	2.9	5
30	Research on thermal stress, deformation, and fatigue lifetime of the rapid heating cycle injection mold. International Journal of Advanced Manufacturing Technology, 2009, 45, 261-275.	3.0	12