Saà d Khabba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8765172/publications.pdf

Version: 2024-02-01

236612 243296 2,099 59 25 44 citations h-index g-index papers 59 59 59 1966 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Data Science Toolkit: An all-in-one python library to help researchers and practitioners in implementing data science-related algorithms with less effort. Software Impacts, 2022, 12, 100240.	0.8	10
2	A Systematic National Stocktake of Crop Models in Morocco. Ecological Modelling, 2022, 470, 110036.	1.2	8
3	Snow hydrology in the Moroccan Atlas Mountains. Journal of Hydrology: Regional Studies, 2022, 42, 101101.	1.0	7
4	Integrating thermal stress indexes within Shuttleworth–Wallace model for evapotranspiration mapping over a complex surface. Irrigation Science, 2021, 39, 45-61.	1.3	8
5	Projection of irrigation water demand based on the simulation of synthetic crop coefficients and climate change. Hydrology and Earth System Sciences, 2021, 25, 637-651.	1.9	16
6	On the Utility of High-Resolution Soil Moisture Data for Better Constraining Thermal-Based Energy Balance over Three Semi-Arid Agricultural Areas. Remote Sensing, 2021, 13, 727.	1.8	10
7	Assessing Irrigation Water Use with Remote Sensing-Based Soil Water Balance at an Irrigation Scheme Level in a Semi-Arid Region of Morocco. Remote Sensing, 2021, 13, 1133.	1.8	21
8	Irrigation Amounts and Timing Retrieval through Data Assimilation of Surface Soil Moisture into the FAO-56 Approach in the South Mediterranean Region. Remote Sensing, 2021, 13, 2667.	1.8	12
9	C-band radar data and in situ measurements for the monitoring of wheat crops in a semi-arid area (center of Morocco). Earth System Science Data, 2021, 13, 3707-3731.	3.7	8
10	Cereal Yield Forecasting with Satellite Drought-Based Indices, Weather Data and Regional Climate Indices Using Machine Learning in Morocco. Remote Sensing, 2021, 13, 3101.	1.8	39
11	Optimizing the Sowing Date to Improve Water Management and Wheat Yield in a Large Irrigation Scheme, through a Remote Sensing and an Evolution Strategy-Based Approach. Remote Sensing, 2021, 13, 3789.	1.8	10
12	Including Radar Soil Moisture into Two-Source Energy Balance Model for Improving Turbulent Fluxes Estimates., 2021,,.		1
13	A Simple Light-Use-Efficiency Model to Estimate Wheat Yield in the Semi-Arid Areas. Agronomy, 2020, 10, 1524.	1.3	5
14	Monitoring of wheat crops using the backscattering coefficient and the interferometric coherence derived from Sentinel-1 in semi-arid areas. Remote Sensing of Environment, 2020, 251, 112050.	4.6	52
15	Linkages between Rainfed Cereal Production and Agricultural Drought through Remote Sensing Indices and a Land Data Assimilation System: A Case Study in Morocco. Remote Sensing, 2020, 12, 4018.	1.8	27
16	Evaluation of Backscattering Models and Support Vector Machine for the Retrieval of Bare Soil Moisture from Sentinel-1 Data. Remote Sensing, 2020, 12, 72.	1.8	69
17	Multi-Scale Evaluation of the TSEB Model over a Complex Agricultural Landscape in Morocco. Remote Sensing, 2020, 12, 1181.	1.8	6
18	An evapotranspiration model self-calibrated from remotely sensed surface soil moisture, land surface temperature and vegetation cover fraction: application to disaggregated SMOS and MODIS data. Hydrology and Earth System Sciences, 2020, 24, 1781-1803.	1.9	22

#	Article	IF	Citations
19	Evapotranspiration partition using the multiple energy balance version of the ISBA-A-g _s land surface model over two irrigated crops in a semi-arid Mediterranean region (Marrakech, Morocco). Hydrology and Earth System Sciences, 2020, 24, 3789-3814.	1.9	10
20	Evaluation of Groundwater Quality and Agricultural use Under a Semiâ€arid Environment: Case of Agafay, Western Haouz, Morocco. Irrigation and Drainage, 2019, 68, 778-796.	0.8	7
21	Assessing the impact of global climate changes on irrigated wheat yields and water requirements in a semi-arid environment of Morocco. Scientific Reports, 2019, 9, 19142.	1.6	67
22	Partitioning evapotranspiration of a drip-irrigated wheat crop: Inter-comparing eddy covariance-, sap flow-, lysimeter- and FAO-based methods. Agricultural and Forest Meteorology, 2019, 265, 310-326.	1.9	59
23	A phenomenological model of soil evaporative efficiency using surface soil moisture and temperature data. Agricultural and Forest Meteorology, 2018, 256-257, 501-515.	1.9	21
24	Retrieving surface soil moisture at high spatio-temporal resolution from a synergy between Sentinel-1 radar and Landsat thermal data: A study case over bare soil. Remote Sensing of Environment, 2018, 211, 321-337.	4.6	118
25	Calibrating an evapotranspiration model using radiometric surface temperature, vegetation cover fraction and near-surface soil moisture data. Agricultural and Forest Meteorology, 2018, 256-257, 104-115.	1.9	42
26	Evaluation and analysis of deep percolation losses of drip irrigated citrus crops under non-saline and saline conditions in a semi-arid area. Biosystems Engineering, 2018, 165, 10-24.	1.9	24
27	Toward a Surface Soil Moisture Product at High Spatiotemporal Resolution: Temporally Interpolated, Spatially Disaggregated SMOS Data. Journal of Hydrometeorology, 2018, 19, 183-200.	0.7	22
28	Combining a Two Source Energy Balance Model Driven by MODIS and MSG-SEVIRI Products with an Aggregation Approach to Estimate Turbulent Fluxes over Sparse and Heterogeneous Vegetation in Sahel Region (Niger). Remote Sensing, 2018, 10, 974.	1.8	7
29	Estimating the water budget components of irrigated crops: Combining the FAO-56 dual crop coefficient with surface temperature and vegetation index data. Agricultural Water Management, 2018, 208, 120-131.	2.4	37
30	A simple and alternative approach based on reference evapotranspiration and leaf area index for estimating tree transpiration in semi-arid regions. Agricultural Water Management, 2017, 188, 61-68.	2.4	16
31	Modified Penman–Monteith equation for monitoring evapotranspiration of wheat crop: Relationship between the surface resistance and remotely sensed stress index. Biosystems Engineering, 2017, 164, 68-84.	1.9	35
32	Performance of the two-source energy budget (TSEB) model for the monitoring of evapotranspiration over irrigated annual crops in North Africa. Agricultural Water Management, 2017, 193, 71-88.	2.4	39
33	Normalizing land surface temperature data for elevation and illumination effects in mountainous areas: A case study using ASTER data over a steep-sided valley in Morocco. Remote Sensing of Environment, 2017, 189, 25-39.	4.6	64
34	Evaporation-based disaggregation of surface soil moisture data: The dispatch method, the CATDS product and on-going research. , 2017 , , .		0
35	Disaggregation of SMOS Soil Moisture to 100 m Resolution Using MODIS Optical/Thermal and Sentinel-1 Radar Data: Evaluation over a Bare Soil Site in Morocco. Remote Sensing, 2017, 9, 1155.	1.8	17
36	Assessment of Soil Quality for a Semi-Arid Irrigated Under Citrus Orchard: Case of the Haouz Plain, Morocco. European Scientific Journal, 2017, 13, 367.	0.0	2

#	Article	IF	CITATIONS
37	Modeling soil evaporation efficiency in a range of soil and atmospheric conditions using a metaâ€analysis approach. Water Resources Research, 2016, 52, 3663-3684.	1.7	56
38	Combining stable isotopes, Eddy Covariance system and meteorological measurements for partitioning evapotranspiration, of winter wheat, into soil evaporation and plant transpiration in a semi-arid region. Agricultural Water Management, 2016, 177, 181-192.	2.4	65
39	Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management. Agricultural Water Management, 2016, 163, 219-235.	2.4	109
40	Performance Metrics for Soil Moisture Downscaling Methods: Application to DISPATCH Data in Central Morocco. Remote Sensing, 2015, 7, 3783-3807.	1.8	69
41	Consistency between In Situ, Model-Derived and High-Resolution-Image-Based Soil Temperature Endmembers: Towards a Robust Data-Based Model for Multi-Resolution Monitoring of Crop Evapotranspiration. Remote Sensing, 2015, 7, 10444-10479.	1.8	28
42	Linkages between common wheat yields and climate in Morocco (1982–2008). International Journal of Biometeorology, 2014, 58, 1489-502.	1.3	23
43	A Life-Size and Near Real-Time Test of Irrigation Scheduling with a Sentinel-2 Like Time Series (SPOT4-Take5) in Morocco. Remote Sensing, 2014, 6, 11182-11203.	1.8	27
44	Irrigation scheduling of a classical gravity network based on the Covariance Matrix Adaptation – Evolutionary Strategy algorithm. Computers and Electronics in Agriculture, 2014, 102, 64-72.	3.7	29
45	A new irrigation priority index based on remote sensing data for assessing the networks irrigation scheduling. Agricultural Water Management, 2013, 119, 1-9.	2.4	36
46	An Agent based Modeling for the Gravity Irrigation Management. Procedia Environmental Sciences, 2013, 19, 804-813.	1.3	5
47	Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco. Water Resources Management, 2013, 27, 4697-4714.	1.9	45
48	Automatic unmixing of MODIS multi-temporal data for inter-annual monitoring of land use at a regional scale (Tensift, Morocco). International Journal of Remote Sensing, 2012, 33, 1325-1348.	1.3	16
49	Observation spatiale à haute resolution spatiale et temporelle : applications pour le suivi de la ressource hydrique en milieu agricole semi-aride. Houille Blanche, 2010, 96, 45-52.	0.3	0
50	Assessment of reference evapotranspiration methods in semi-arid regions: Can weather forecast data be used as alternate of ground meteorological parameters?. Journal of Arid Environments, 2010, 74, 1587-1596.	1.2	96
51	Citrus orchard evapotranspiration: Comparison between eddy covariance measurements and the FAO-56 approach estimates. Plant Biosystems, 2009, 143, 201-208.	0.8	46
52	Evaluation of Digital Hemispherical Photography and Plant Canopy Analyzer for Measuring Vegetation Area Index of Orange Orchards. Journal of Agronomy, 2009, 8, 67-72.	0.4	15
53	An integrated modelling and remote sensing approach for hydrological study in arid and semiâ€arid regions: the SUDMED Programme. International Journal of Remote Sensing, 2008, 29, 5161-5181.	1.3	109
54	Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agricultural Water Management, 2006, 79, 1-27.	2.4	348

Saïd Khabba

#	Article	IF	CITATIONS
55	Wheat yield estimation using remote sensing and the STICS model in the semiarid Yaqui valley, Mexico. Agronomy for Sustainable Development, 2004, 24, 295-304.	0.8	35
56	Development and validation of model for estimating temperature within maize ear. Agricultural and Forest Meteorology, 2001, 106, 131-146.	1.9	2
57	Maize ear temperature. European Journal of Agronomy, 2001, 14, 197-208.	1.9	14
58	Development and validation of model of heat diffusion in maize ear. Agricultural and Forest Meteorology, 1999, 97, 113-127.	1.9	7
59	Towards Smart Big Weather Data Management. , 0, , .		1