Meikang Han

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8765169/meikang-han-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

40 4,948 27 40 g-index

40 g-index

40 g-index

40 g-index

40 the papers of the paper

#	Paper	IF	Citations
40	Shifts in valence states in bimetallic MXenes revealed by electron energy-loss spectroscopy (EELS). 2D Materials, 2022 , 9, 025004	5.9	1
39	Ultrafast assembly and healing of nanomaterial networks on polymer substrates for flexible hybrid electronics. <i>Applied Materials Today</i> , 2021 , 22, 100956	6.6	2
38	Solution-Processed Ti C T MXene Antennas for Radio-Frequency Communication. <i>Advanced Materials</i> , 2021 , 33, e2003225	24	38
37	Highly conductive and scalable Ti3C2Tx-coated fabrics for efficient electromagnetic interference shielding. <i>Carbon</i> , 2021 , 174, 382-389	10.4	27
36	Enhanced absorption of electromagnetic waves in Ti3C2T MXene films with segregated polymer inclusions. <i>Composites Science and Technology</i> , 2021 , 213, 108878	8.6	8
35	Adjustable electrochemical properties of solid-solution MXenes. <i>Nano Energy</i> , 2021 , 88, 106308	17.1	18
34	MXene Films: Scalable Manufacturing of Free-Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity (Adv. Mater. 23/2020). <i>Advanced Materials</i> , 2020 , 32, 2070180	24	3
33	Tunable electrochromic behavior of titanium-based MXenes. <i>Nanoscale</i> , 2020 , 12, 14204-14212	7.7	19
32	Beyond TiCT: MXenes for Electromagnetic Interference Shielding. ACS Nano, 2020, 14, 5008-5016	16.7	218
31	Conductivity extraction of thin Ti3C2Tx MXene films over 100 GHz using capacitively coupled test-fixture. <i>Applied Physics Letters</i> , 2020 , 116, 184101	3.4	5
30	Scalable, Highly Conductive, and Micropatternable MXene Films for Enhanced Electromagnetic Interference Shielding. <i>Matter</i> , 2020 , 3, 546-557	12.7	62
29	Tailoring Electronic and Optical Properties of MXenes through Forming Solid Solutions. <i>Journal of the American Chemical Society</i> , 2020 , 142, 19110-19118	16.4	58
28	Scalable Manufacturing of Free-Standing, Strong Ti C T MXene Films with Outstanding Conductivity. <i>Advanced Materials</i> , 2020 , 32, e2001093	24	268
27	Ultralight and Mechanically Robust TiCT Hybrid Aerogel Reinforced by Carbon Nanotubes for Electromagnetic Interference Shielding. <i>ACS Applied Materials & District Research</i> , 11, 38046-38054	9.5	146
26	Effect of Ti3AlC2 MAX Phase on Structure and Properties of Resultant Ti3C2Tx MXene. <i>ACS Applied Nano Materials</i> , 2019 , 2, 3368-3376	5.6	92
25	Anisotropic MXene Aerogels with a Mechanically Tunable Ratio of Electromagnetic Wave Reflection to Absorption. <i>Advanced Optical Materials</i> , 2019 , 7, 1900267	8.1	138
24	Novel Scale-Like Structures of Graphite/TiC/Ti3C2 Hybrids for Electromagnetic Absorption. <i>Advanced Electronic Materials</i> , 2018 , 4, 1700617	6.4	61

(2016-2018)

23	Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. <i>Carbon</i> , 2018 , 132, 343-351	10.4	189
22	Effects of alumina hollow microspheres on the properties of water-borne polyurethane films. <i>Journal of Materials Research</i> , 2018 , 33, 2486-2493	2.5	2
21	Self-Assembly CoreBhell Graphene-Bridged Hollow MXenes Spheres 3D Foam with Ultrahigh Specific EM Absorption Performance. <i>Advanced Functional Materials</i> , 2018 , 28, 1803938	15.6	366
20	Broadband Microwave Absorbing Composites with a Multi-Scale Layered Structure Based on Reduced Graphene Oxide Film as the Frequency Selective Surface. <i>Materials</i> , 2018 , 11,	3.5	13
19	Ultralight MXene-Coated, Interconnected SiCnws Three-Dimensional Lamellar Foams for Efficient Microwave Absorption in the X-Band. <i>ACS Applied Materials & District Amplied Materials & Distri</i>	9.5	110
18	Carbon Hollow Microspheres with a Designable Mesoporous Shell for High-Performance Electromagnetic Wave Absorption. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 6332-6341	9.5	319
17	Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. <i>Carbon</i> , 2017 , 116, 50-58	10.4	413
16	Laminated and Two-Dimensional Carbon-Supported Microwave Absorbers Derived from MXenes. <i>ACS Applied Materials & Derived Science</i> , 2017, 9, 20038-20045	9.5	229
15	Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 4068-4074	7.1	224
14	Flexible and Thermostable Graphene/SiC Nanowire Foam Composites with Tunable Electromagnetic Wave Absorption Properties. <i>ACS Applied Materials & District Research</i> , 9, 11803-1	1870	231
13	A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 7621-7628	7.1	121
12	Effect of core-shell microspheres as pore-forming agent on the properties of porous alumina ceramics. <i>Materials and Design</i> , 2017 , 113, 384-390	8.1	27
11	Macroscopic bioinspired graphene sponge modified with in-situ grown carbon nanowires and its electromagnetic properties. <i>Carbon</i> , 2017 , 111, 94-102	10.4	144
10	Core/shell structured C/ZnO nanoparticles composites for effective electromagnetic wave absorption. <i>RSC Advances</i> , 2016 , 6, 6467-6474	3.7	84
9	Dielectric and electromagnetic wave absorption properties of reduced graphene oxide/barium aluminosilicate glassderamic composites. <i>Ceramics International</i> , 2016 , 42, 7099-7106	5.1	13
8	Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 2695-270	03	166
7	Synthesis and EMW absorbing properties of nano SiC modified PDCBiOC. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 5962-5969	7.1	69
6	Effect of strontium doping on dielectric and infrared emission properties of barium aluminosilicate ceramics. <i>Materials Letters</i> , 2016 , 183, 223-226	3.3	19

5	Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band. <i>ACS Applied Materials & District Materials </i>	9.5	532
4	Carbon nanotubes modified with ZnO nanoparticles: High-efficiency electromagnetic wave absorption at high-temperatures. <i>Ceramics International</i> , 2015 , 41, 4906-4915	5.1	59
3	Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16403-16409	13	447
2	Surface Redox Pseudocapacitance of Partially Oxidized Titanium Carbide MXene in Water-in-Salt Electrolyte. <i>ACS Energy Letters</i> ,30-35	20.1	7
1	Fabrication of ZAO Ceramic Target and Effect on the Photoelectric Properties of Its Film. <i>Ceramic Transactions</i> , 159-166	0.1	