Meikang Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8765169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ti ₃ C ₂ MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band. ACS Applied Materials & Interfaces, 2016, 8, 21011-21019.	8.0	775
2	Scalable Manufacturing of Free‣tanding, Strong Ti ₃ C ₂ T <i>_x</i> MXene Films with Outstanding Conductivity. Advanced Materials, 2020, 32, e2001093.	21.0	613
3	Selfâ€Assembly Core–Shell Grapheneâ€Bridged Hollow MXenes Spheres 3D Foam with Ultrahigh Specific EM Absorption Performance. Advanced Functional Materials, 2018, 28, 1803938.	14.9	561
4	Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon, 2017, 116, 50-58.	10.3	525
5	Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. Journal of Materials Chemistry A, 2014, 2, 16403-16409.	10.3	514
6	Beyond Ti ₃ C ₂ T _{<i>x</i>} : MXenes for Electromagnetic Interference Shielding. ACS Nano, 2020, 14, 5008-5016.	14.6	489
7	Carbon Hollow Microspheres with a Designable Mesoporous Shell for High-Performance Electromagnetic Wave Absorption. ACS Applied Materials & Interfaces, 2017, 9, 6332-6341.	8.0	428
8	Ti ₃ C ₂ MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. Journal of Materials Chemistry C, 2017, 5, 4068-4074.	5.5	345
9	Laminated and Two-Dimensional Carbon-Supported Microwave Absorbers Derived from MXenes. ACS Applied Materials & Interfaces, 2017, 9, 20038-20045.	8.0	323
10	Flexible and Thermostable Graphene/SiC Nanowire Foam Composites with Tunable Electromagnetic Wave Absorption Properties. ACS Applied Materials & Interfaces, 2017, 9, 11803-11810.	8.0	315
11	Ultralight and Mechanically Robust Ti ₃ C ₂ T <i>_x</i> Hybrid Aerogel Reinforced by Carbon Nanotubes for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2019, 11, 38046-38054.	8.0	283
12	Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon, 2018, 132, 343-351.	10.3	280
13	Anisotropic MXene Aerogels with a Mechanically Tunable Ratio of Electromagnetic Wave Reflection to Absorption. Advanced Optical Materials, 2019, 7, 1900267.	7.3	245
14	Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. Journal of the European Ceramic Society, 2016, 36, 2695-2703.	5.7	221
15	Effect of Ti ₃ AlC ₂ MAX Phase on Structure and Properties of Resultant Ti ₃ C ₂ T _{<i>x</i>} MXene. ACS Applied Nano Materials, 2019, 2, 3368-3376.	5.0	210
16	Tailoring Electronic and Optical Properties of MXenes through Forming Solid Solutions. Journal of the American Chemical Society, 2020, 142, 19110-19118.	13.7	198
17	Macroscopic bioinspired graphene sponge modified with in-situ grown carbon nanowires and its electromagnetic properties. Carbon, 2017, 111, 94-102.	10.3	184
18	A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti ₂ CT _x MXene. Journal of Materials Chemistry C, 2017, 5, 7621-7628.	5.5	177

Meikang Han

#	Article	IF	CITATIONS
19	Ultralight MXene-Coated, Interconnected SiCnws Three-Dimensional Lamellar Foams for Efficient Microwave Absorption in the X-Band. ACS Applied Materials & Interfaces, 2018, 10, 34524-34533.	8.0	172
20	Scalable, Highly Conductive, and Micropatternable MXene Films for Enhanced Electromagnetic Interference Shielding. Matter, 2020, 3, 546-557.	10.0	127
21	Solutionâ€Processed Ti ₃ C ₂ T <i>_x</i> MXene Antennas for Radioâ€Frequency Communication. Advanced Materials, 2021, 33, e2003225.	21.0	109
22	Core/shell structured C/ZnO nanoparticles composites for effective electromagnetic wave absorption. RSC Advances, 2016, 6, 6467-6474.	3.6	101
23	Synthesis and EMW absorbing properties of nano SiC modified PDC–SiOC. Journal of Materials Chemistry C, 2016, 4, 5962-5969.	5.5	96
24	Novel Scale‣ike Structures of Graphite/TiC/Ti ₃ C ₂ Hybrids for Electromagnetic Absorption. Advanced Electronic Materials, 2018, 4, 1700617.	5.1	86
25	Highly conductive and scalable Ti3C2T -coated fabrics for efficient electromagnetic interference shielding. Carbon, 2021, 174, 382-389.	10.3	84
26	Carbon nanotubes modified with ZnO nanoparticles: High-efficiency electromagnetic wave absorption at high-temperatures. Ceramics International, 2015, 41, 4906-4915.	4.8	74
27	Adjustable electrochemical properties of solid-solution MXenes. Nano Energy, 2021, 88, 106308.	16.0	55
28	Surface Redox Pseudocapacitance of Partially Oxidized Titanium Carbide MXene in Water-in-Salt Electrolyte. ACS Energy Letters, 2022, 7, 30-35.	17.4	43
29	Tunable electrochromic behavior of titanium-based MXenes. Nanoscale, 2020, 12, 14204-14212.	5.6	42
30	Enhanced absorption of electromagnetic waves in Ti3C2T MXene films with segregated polymer inclusions. Composites Science and Technology, 2021, 213, 108878.	7.8	41
31	Effect of core-shell microspheres as pore-forming agent on the properties of porous alumina ceramics. Materials and Design, 2017, 113, 384-390.	7.0	36
32	Effect of strontium doping on dielectric and infrared emission properties of barium aluminosilicate ceramics. Materials Letters, 2016, 183, 223-226.	2.6	23
33	Broadband Microwave Absorbing Composites with a Multi-Scale Layered Structure Based on Reduced Graphene Oxide Film as the Frequency Selective Surface. Materials, 2018, 11, 1771.	2.9	21
34	Dielectric and electromagnetic wave absorption properties of reduced graphene oxide/barium aluminosilicate glass–ceramic composites. Ceramics International, 2016, 42, 7099-7106.	4.8	15
35	Conductivity extraction of thin Ti3C2T <i>x</i> MXene films over 1–10 GHz using capacitively coupled test-fixture. Applied Physics Letters, 2020, 116,	3.3	12
36	Shifts in valence states in bimetallic MXenes revealed by electron energy-loss spectroscopy (EELS). 2D Materials, 2022, 9, 025004.	4.4	11

#	Article	IF	CITATIONS
37	MXene Films: Scalable Manufacturing of Freeâ€6tanding, Strong Ti ₃ C ₂ T <i>_x</i> MXene Films with Outstanding Conductivity (Adv.) Tj ETQ	գ ೬1.0. 78	4 3 914 rgBT /
38	Ultrafast assembly and healing of nanomaterial networks on polymer substrates for flexible hybrid electronics. Applied Materials Today, 2021, 22, 100956.	4.3	7
39	Effects of alumina hollow microspheres on the properties of water-borne polyurethane films. Journal of Materials Research, 2018, 33, 2486-2493.	2.6	5