Beate Brand-Saberi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8765159/publications.pdf Version: 2024-02-01

		218677	243625
106	2,447	26	44
papers	citations	h-index	g-index
112	112	112	2952
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Atoh8 in Development and Disease. Biology, 2022, 11, 136.	2.8	7
2	Regulation of Cell Delamination During Cortical Neurodevelopment and Implication for Brain Disorders. Frontiers in Neuroscience, 2022, 16, 824802.	2.8	3
3	The Emergence of Embryonic Myosin Heavy Chain during Branchiomeric Muscle Development. Life, 2022, 12, 785.	2.4	2
4	Exploring the situational motivation of medical students through clinical medicine level test: a cross-sectional study. American Journal of Physiology - Advances in Physiology Education, 2022, 46, 416-425.	1.6	2
5	Nano-sulforaphane attenuates PhIP-induced early abnormal embryonic neuro-development. Annals of Anatomy, 2021, 233, 151617.	1.9	6
6	Retinoic Acid Signaling Plays a Crucial Role in Excessive Caffeine Intake-Disturbed Apoptosis and Differentiation of Myogenic Progenitors. Frontiers in Cell and Developmental Biology, 2021, 9, 586767.	3.7	1
7	atoh8 expression pattern in early zebrafish embryonic development. Histochemistry and Cell Biology, 2021, 156, 209-226.	1.7	5
8	Interaction between retinoic acid and FGF/ERK signals are involved in Dexamethasone-induced abnormal myogenesis during embryonic development. Toxicology, 2021, 461, 152917.	4.2	2
9	H3 acetylation selectively promotes basal progenitor proliferation and neocortex expansion. Science Advances, 2021, 7, eabc6792.	10.3	16
10	How to distinguish between different cell lineages sharing common markers using combinations of double in-situ-hybridization and immunostaining in avian embryos: CXCR4-positive mesodermal and neural crest-derived cells. Histochemistry and Cell Biology, 2021, 155, 145-155.	1.7	9
11	The CXCR4/SDF-1 Axis in the Development of Facial Expression and Non-somitic Neck Muscles. Frontiers in Cell and Developmental Biology, 2020, 8, 615264.	3.7	12
12	Cxcr4 and Sdf-1 are critically involved in the formation of facial and non-somitic neck muscles. Scientific Reports, 2020, 10, 5049.	3.3	9
13	Zinc oxide nanoparticles exposure-induced oxidative stress restricts cranial neural crest development during chicken embryogenesis. Ecotoxicology and Environmental Safety, 2020, 194, 110415.	6.0	23
14	In ovo technique for cell injection in the CPM followed by bead implantation in the BA2 of chicken embryos. MethodsX, 2020, 7, 100792.	1.6	6
15	Dysbacteriosisâ€induced LPS elevation disturbs the development of muscle progenitor cells by interfering with retinoic acid signaling. FASEB Journal, 2020, 34, 6837-6853.	0.5	13
16	Skeletal Muscle Stem Cells. Learning Materials in Biosciences, 2020, , 77-97.	0.4	1
17	Chicken Second Branchial Arch Progenitor Cells Contribute to Heart Musculature in vitro and in vivo. Cells Tissues Organs, 2020, 209, 165-176.	2.3	5
18	The Hinrichsen Embryology Collection: Digitization of Historical Histological Human Embryonic Slides and MRI of Whole Fetuses. Cells Tissues Organs, 2019, 207, 1-14.	2.3	2

#	Article	IF	CITATIONS
19	CNTF and Nrf2 Are Coordinately Involved in Regulating Self-Renewal and Differentiation of Neural Stem Cell during Embryonic Development. IScience, 2019, 19, 303-315.	4.1	14
20	Atoh8 acts as a regulator of chondrocyte proliferation and differentiation in endochondral bones. PLoS ONE, 2019, 14, e0218230.	2.5	11
21	Dexamethasone interferes with osteoblasts formation during osteogenesis through altering IGFâ€1â€mediated angiogenesis. Journal of Cellular Physiology, 2019, 234, 15167-15181.	4.1	13
22	bHLH Transcription Factor Math6 Antagonizes TGF-β Signalling in Reprogramming, Pluripotency and Early Cell Fate Decisions. Cells, 2019, 8, 529.	4.1	8
23	Nydus One Syringe Extruder (NOSE): A Prusa i3 3D printer conversion for bioprinting applications utilizing the FRESH-method. HardwareX, 2019, 6, e00069.	2.2	44
24	Cell survival controlled by lensâ€derived Sema3A–Nrp1 is vital on caffeineâ€suppressed corneal innervation during chick organogenesis. Journal of Cellular Physiology, 2019, 234, 9826-9838.	4.1	2
25	Microbiotaâ€derived lipopolysaccharide retards chondrocyte hypertrophy in the growth plate through elevating Sox9 expression. Journal of Cellular Physiology, 2019, 234, 2593-2605.	4.1	12
26	Atoh8 acts as a regulator of chondrocyte proliferation and differentiation in endochondral bones. , 2019, 14, e0218230.		0
27	Atoh8 acts as a regulator of chondrocyte proliferation and differentiation in endochondral bones. , 2019, 14, e0218230.		0
28	Atoh8 acts as a regulator of chondrocyte proliferation and differentiation in endochondral bones. , 2019, 14, e0218230.		0
29	Atoh8 acts as a regulator of chondrocyte proliferation and differentiation in endochondral bones. , 2019, 14, e0218230.		0
30	Morphogenesis of Trunk Muscles. , 2018, , .		0
31	The Perspectives of Medical Students in China to Undergo Short-Term Training Abroad. International Journal of Higher Education, 2018, 7, 203.	0.5	0
32	Murine transcription factor Math6 is a regulator of placenta development. Scientific Reports, 2018, 8, 14997.	3.3	13
33	The role of autophagy in morphogenesis and stem cell maintenance. Histochemistry and Cell Biology, 2018, 150, 721-732.	1.7	14
34	CXCR4/SDF1 signalling promotes sensory neuron clustering in vitro. Biology Open, 2018, 7, .	1.2	10
35	Qualitative and Quantitative Analysis of Cardiac Progenitor Cells in Cases of Myocarditis and Cardiomyopathy. Frontiers in Genetics, 2018, 9, 72.	2.3	2
36	Thymosin β4 overexpression regulates neuron production and spatial distribution in the developing avian optic tectum. Histochemistry and Cell Biology, 2017, 147, 555-564.	1.7	13

#	Article	IF	CITATIONS
37	CREB, NF-Y and MEIS1 conserved binding sites are essential to balance Myostatin promoter/enhancer activity during early myogenesis. Molecular Biology Reports, 2017, 44, 419-427.	2.3	12
38	GGNBP2 is necessary for testis morphology and sperm development. Scientific Reports, 2017, 7, 2998.	3.3	18
39	Morphological Studies of Wobbler Mouse Dorsal Root Ganglia Show Neurofilamental Disorders. Journal of Neurology and Experimental Neuroscience, 2017, 03, .	0.1	1
40	SDF-1 controls the muscle and blood vessel formation of the somite. International Journal of Developmental Biology, 2016, 60, 29-38.	0.6	10
41	A novel interaction between ATOH8 and PPP3CB. Histochemistry and Cell Biology, 2016, 145, 5-16.	1.7	12
42	The development of anatomy: from macroscopic body dissections to stem cell–derived organoids. Histochemistry and Cell Biology, 2016, 146, 647-650.	1.7	3
43	Development of the shoulder girdle musculature. Developmental Dynamics, 2016, 245, 342-350.	1.8	15
44	Analysis of gelsolin expression pattern in developing chicken embryo reveals high GSN expression level in tissues of neural crest origin. Brain Structure and Function, 2016, 221, 515-534.	2.3	7
45	Expression Pattern of Axin2 During Chicken Development. PLoS ONE, 2016, 11, e0163610.	2.5	4
46	Regression of Gastric Cancer by Systemic Injection of RNA Nanoparticles Carrying both Ligand and siRNA. Scientific Reports, 2015, 5, 10726.	3.3	89
47	Inflammation and neuronal death in the motor cortex of the wobbler mouse, an ALS animal model. Journal of Neuroinflammation, 2015, 12, 215.	7.2	34
48	ATOH8: a novel marker in human muscle fiber regeneration. Histochemistry and Cell Biology, 2015, 143, 443-452.	1.7	22
49	Spatiotemporal expression of Math6 during mouse embryonic development. Histochemistry and Cell Biology, 2015, 143, 575-582.	1.7	15
50	Implementation of a manual for working with wobbler mice and criteria for discontinuation of the experiment. Annals of Anatomy, 2015, 200, 118-124.	1.9	17
51	Recruitment of Skeletal Muscle Progenitors to Secondary Sites: A Role for CXCR4/SDF-1 Signalling in Skeletal Muscle Development. Results and Problems in Cell Differentiation, 2015, 56, 1-23.	0.7	16
52	Wnt11 Is Required for Oriented Migration of Dermogenic Progenitor Cells from the Dorsomedial Lip of the Avian Dermomyotome. PLoS ONE, 2014, 9, e92679.	2.5	14
53	New Aspects of Progesterone Interactions with the Actin Cytoskeleton and Neurosteroidogenesis in the Cerebellum and the Neuronal Growth Cone. Journal of Histochemistry and Cytochemistry, 2014, 62, 835-845.	2.5	16
54	Retrograde migration of pectoral girdle muscle precursors depends on CXCR4/SDF-1 signaling. Histochemistry and Cell Biology, 2014, 142, 473-488.	1.7	28

#	Article	IF	CITATIONS
55	Induction of Neoplasia After Deep Anterior Lamellar Keratoplasty in a CXL-Treated Cornea. Cornea, 2014, 33, 313-316.	1.7	14
56	Combination of in ovo electroporation and timeâ€lapse imaging to study migrational events in chicken embryos. Developmental Dynamics, 2014, 243, 690-698.	1.8	8
57	A thymosin beta15-like peptide promotes intersegmental myotome extension in the chicken embryo. Histochemistry and Cell Biology, 2014, 141, 275-287.	1.7	5
58	ATOH8, a regulator of skeletal myogenesis in the hypaxial myotome of the trunk. Histochemistry and Cell Biology, 2014, 141, 289-300.	1.7	24
59	Trachea. Thoracic Surgery Clinics, 2014, 24, 1-5.	1.0	76
60	Long-term incubation with mifepristone (MLTI) increases the spine density in developing Purkinje cells: new insights into progesterone receptor mechanisms. Cellular and Molecular Life Sciences, 2014, 71, 1723-1740.	5.4	22
61	Neurogenesis, gliogenesis and the developing chicken optic tectum: an immunohistochemical and ultrastructural analysis. Brain Structure and Function, 2014, 219, 1009-1024.	2.3	14
62	Fast rearrangement of the neuronal growth cone's actin cytoskeleton following VEGF stimulation. Histochemistry and Cell Biology, 2013, 139, 431-445.	1.7	25
63	The dermomyotome ventrolateral lip is essential for the hypaxial myotome formation. BMC Developmental Biology, 2013, 13, 37.	2.1	15
64	Rapid Impact of Progesterone on the Neuronal Growth Cone. Endocrinology, 2013, 154, 3784-3795.	2.8	16
65	Fast rearrangement of the neuronal growth cone� s actincytoskeleton following VEGF stimulation. Annals of Neurosciences, 2013, 20, 115.	1.7	Ο
66	Correction: The dermomyotome ventrolateral lip is essential for the hypaxial myotome formation. BMC Developmental Biology, 2013, 13, 41.	2.1	1
67	VEGF-Induced Growth Cone Enhancement Is Diminished by Inhibiting Tyrosine-Residue 1214 of VEGFR-2. Cells Tissues Organs, 2012, 196, 195-205.	2.3	24
68	Bilateral Supernumerary Sternocleidomastoid Heads with Critical Narrowing of the Minor and Major Supraclavicular Fossae: Clinical and Surgical Implications. International Journal of Morphology, 2012, 30, 927-933.	0.2	6
69	Impact of vegf on astrocytes: Analysis of gap junctional intercellular communication, proliferation, and motility. Glia, 2012, 60, 936-947.	4.9	40
70	Topographic anatomy of the internal laryngeal nerve: Surgical considerations. Head and Neck, 2012, 34, 534-540.	2.0	21
71	Myogenesis and muscle regeneration. Histochemistry and Cell Biology, 2012, 138, 187-199.	1.7	48
72	Thymosin β4 induces folding of the developing optic tectum in the chicken (<i>Gallus domesticus</i>). Journal of Comparative Neurology, 2012, 520, 1650-1662.	1.6	13

#	Article	IF	CITATIONS
73	Sprouty2 and â€4 regulate axon outgrowth by hippocampal neurons. Hippocampus, 2012, 22, 434-441.	1.9	20
74	Comparative analysis of Neph gene expression in mouse and chicken development. Histochemistry and Cell Biology, 2012, 137, 355-366.	1.7	29
75	Sternalis Muscle. Annals of Plastic Surgery, 2011, 67, 646-648.	0.9	20
76	Sternalis muscle: an underestimated anterior chest wall anatomical variant. Journal of Cardiothoracic Surgery, 2011, 6, 73.	1.1	33
77	Etiopathogenesis of hyperostosis frontalis interna: A mystery still. Annals of Anatomy, 2011, 193, 453-458.	1.9	41
78	Diversification and Molecular Evolution of ATOH8, a Gene Encoding a bHLH Transcription Factor. PLoS ONE, 2011, 6, e23005.	2.5	24
79	A novel role of CXCR4 and SDFâ€1 during migration of cloacal muscle precursors. Developmental Dynamics, 2010, 239, 1622-1631.	1.8	26
80	Molecular cloning of chicken Cecr2 and its expression during chicken embryo development. International Journal of Developmental Biology, 2010, 54, 925-929.	0.6	8
81	Vestigial-like 2 acts downstream of MyoD activation and is associated with skeletal muscle differentiation in chick myogenesis. Mechanisms of Development, 2010, 127, 120-136.	1.7	25
82	Histone Deacetylase Inhibitor, Trichostatin A, Affects Gene Expression Patterns during Morphogenesis of Chicken Limb Buds in vivo. Cells Tissues Organs, 2009, 190, 121-134.	2.3	9
83	Sprouty2 down-regulation promotes axon growth by adult sensory neurons. Molecular and Cellular Neurosciences, 2009, 42, 328-340.	2.2	39
84	Stromal-derived factor-1 (SDF-1) expression during early chick development. International Journal of Developmental Biology, 2008, 52, 87-92.	0.6	42
85	Avian Somitogenesis: Translating Time and Space into Pattern. Advances in Experimental Medicine and Biology, 2008, 638, 42-57.	1.6	1
86	BMPs restrict the position of premuscle masses in the limb buds by influencing Tcf4 expression. Developmental Biology, 2006, 299, 330-344.	2.0	27
87	The eventful somite: patterning, fate determination and cell division in the somite. Anatomy and Embryology, 2006, 211, 21-30.	1.5	55
88	Inhibitors of CXCR4 affect the migration and fate of CXCR4+ progenitors in the developing limb of chick embryos. Developmental Dynamics, 2006, 235, 3007-3015.	1.8	43
89	Expression of chemokine receptor CXCR4 during chick embryo development. Anatomy and Embryology, 2005, 210, 35-41.	1.5	47
90	CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells. Genes and Development, 2005, 19, 2187-2198.	5.9	164

#	Article	IF	CITATIONS
91	cDermo-1 misexpression induces dense dermis, feathers, and scales. Developmental Biology, 2005, 277, 42-50.	2.0	30
92	RNAi-induced targeted silencing of developmental control genes during chicken embryogenesis. Developmental Biology, 2005, 285, 80-90.	2.0	51
93	BMPs induce dermal markers and ectopic feather tracts. Mechanisms of Development, 2002, 110, 51-60.	1.7	51
94	Morphological left-right asymmetry of Hensen's node precedes the asymmetric expression of Shh and Fgf8 in the chick embryo. Anatomy and Embryology, 2002, 205, 343-354.	1.5	63
95	Limb muscle development. International Journal of Developmental Biology, 2002, 46, 905-14.	0.6	115
96	Regulation of <i>Epha4</i> expression in paraxial and lateral plate mesoderm by ectodermâ€derived signals. Developmental Dynamics, 2001, 220, 377-386.	1.8	35
97	1 Evolution and Development of Distinct Cell Lineages Derived from Somites. Current Topics in Developmental Biology, 1999, 48, 1-42.	2.2	129
98	Increased expression of platelet-derived growth factor receptor alpha and beta and vascular endothelial growth factor in the skin of patients with chronic venous insufficiency. Archives of Dermatological Research, 1998, 290, 291-297.	1.9	43
99	Participation of individual brachial somites in skeletal muscles of the avian distal wing. Anatomy and Embryology, 1996, 194, 327-39.	1.5	33
100	N-Cadherin Is Involved in Myoblast Migration and Muscle Differentiation in the Avian Limb Bud. Developmental Biology, 1996, 178, 160-173.	2.0	72
101	Fibroblast growth factor receptor 1 in skeletal and heart muscle cells: Expression during early avian development and regulation after notochord transplantation. , 1996, 206, 310-317.		12
102	Angiogenic potential of the avian somite. Developmental Dynamics, 1995, 202, 165-171.	1.8	164
103	Presenting Human Embryology in an International Open-Access Reference Centre (HERC). , 0, , .		4
104	Real-Time Imaging of Accessible Axon Guidance Assays in Three-Dimensional Culture. Journal of Neurology and Experimental Neuroscience, 0, , .	0.1	0
105	CNTF and Nrf2 are Co-ordinately Involved in Regulating Self-Renewal and Differentiation of Neural Stem Cell During Embryonic Neural Development. SSRN Electronic Journal, 0, , .	0.4	0
106	CNTF and Nrf2 Are Co-Ordinately Involved in Regulating Self-Renewal and Differentiation of Neural Stem Cell During Embryonic Neural Development. SSRN Electronic Journal, 0, , .	0.4	0