Ding Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8764992/publications.pdf Version: 2024-02-01

DING WANG

#	Article	lF	CITATIONS
1	Preparation of High-Purity Mesoporous Alumina Material with Industrial Al(OH)3 via Ion Exchange. Transactions of the Indian Institute of Metals, 2022, 75, 771-781.	0.7	0
2	Study on Oxygen Evolution Reaction Performance of Jarosite/C Composites. Materials, 2022, 15, 668.	1.3	2
3	Quaternary alloy ScAlGaN: A promising strategy to improve the quality of ScAlN. Applied Physics Letters, 2022, 120, .	1.5	16
4	Synthesis and Characterization of High-Purity Mesoporous Alumina with Excellent Adsorption Capacity for Congo Red. Materials, 2022, 15, 970.	1.3	8
5	High-Order Sezawa Mode Alscn/Gan/Sapphire Surface Acoustic Wave Resonators. , 2022, , .		4
6	Scalable Synthesis of Monolayer Hexagonal Boron Nitride on Graphene with Giant Bandgap Renormalization. Advanced Materials, 2022, 34, e2201387.	11.1	22
7	Prevalence and potential risk factors of chronic pruritus among community middleâ€aged and older population in Beijing, China. Journal of the European Academy of Dermatology and Venereology, 2022, 36, 1074-1079.	1.3	2
8	Interfacial Modulated Lattice-Polarity-Controlled Epitaxy of III-Nitride Heterostructures on Si(111). ACS Applied Materials & Interfaces, 2022, 14, 15747-15755.	4.0	13
9	An Epitaxial Ferroelectric ScAlN/GaN Heterostructure Memory. Advanced Electronic Materials, 2022, 8, .	2.6	37
10	The long-term effect of dental treatment under general anaesthesia or physical restraints on children's dental anxiety and behaviour European Journal of Paediatric Dentistry, 2022, 23, 27-32.	0.4	3
11	Development of a High-Energy X-Ray Backlighting System for Z-Pinch Experiments. Fusion Science and Technology, 2022, 78, 468-474.	0.6	0
12	Ferroelectric N-polar ScAlN/GaN heterostructures grown by molecular beam epitaxy. Applied Physics Letters, 2022, 121, .	1.5	15
13	Controlling Phaseâ€Coherent Electron Transport in Illâ€Nitrides: Toward Room Temperature Negative Differential Resistance in AlGaN/GaN Double Barrier Structures. Advanced Functional Materials, 2021, 31, 2007216.	7.8	12
14	Oxygen defect dominated photoluminescence emission of Sc <i>x</i> Al1â^' <i>x</i> N grown by molecular beam epitaxy. Applied Physics Letters, 2021, 118, .	1.5	22
15	Enhancing CO2 plasma conversion using metal grid catalysts. Journal of Applied Physics, 2021, 129, .	1.1	14
16	Microstructure and dislocation evolution in composition gradient AlGaN grown by MOCVD. Superlattices and Microstructures, 2021, 152, 106842.	1.4	6
17	Fully epitaxial ferroelectric ScAlN grown by molecular beam epitaxy. Applied Physics Letters, 2021, 118, .	1.5	71
18	N-polar ScAlN and HEMTs grown by molecular beam epitaxy. Applied Physics Letters, 2021, 119, .	1.5	27

DING WANG

#	Article	IF	CITATIONS
19	Study on the Synthesis of High-Purity γ-Phase Mesoporous Alumina with Excellent CO2 Adsorption Performance via a Simple Method Using Industrial Aluminum Oxide as Raw Material. Materials, 2021, 14, 5465.	1.3	4
20	Fully epitaxial ferroelectric ScGaN grown on GaN by molecular beam epitaxy. Applied Physics Letters, 2021, 119, .	1.5	35
21	Lignin-Induced CaCO ₃ Vaterite Structure for Biocatalytic Artificial Photosynthesis. ACS Applied Materials & Interfaces, 2021, 13, 58522-58531.	4.0	12
22	The trigger and data acquisition system of the FASER experiment. Journal of Instrumentation, 2021, 16, P12028.	0.5	13
23	The effect of kink and vertical leakage mechanisms in GaN-on-Si epitaxial layers. Semiconductor Science and Technology, 2020, 35, 085015.	1.0	1
24	"Waste to Wealth― Lignin as a Renewable Building Block for Energy Harvesting/Storage and Environmental Remediation. ChemSusChem, 2020, 13, 2807-2827.	3.6	55
25	III-nitrides based resonant tunneling diodes. Journal Physics D: Applied Physics, 2020, 53, 253002.	1.3	8
26	Lignin-fueled photoelectrochemical platform for light-driven redox biotransformation. Green Chemistry, 2020, 22, 5151-5160.	4.6	24
27	A GaN/AlN quantum cascade detector with a broad response from the mid-infrared (4.1 μm) to the visible (550 nm) spectral range. Applied Physics Letters, 2020, 116, 171102.	1.5	13
28	Full-composition-graded InxGa1â^'xN films grown by molecular beam epitaxy. Applied Physics Letters, 2020, 117, 182101.	1.5	7
29	Experimental Evidence of Large Bandgap Energy in Atomically Thin AlN. Advanced Functional Materials, 2019, 29, 1902608.	7.8	21
30	Planar anisotropic Shubnikov-de-Haas oscillations of two-dimensional electron gas in AlN/GaN heterostructure. Applied Physics Letters, 2019, 115, 152107.	1.5	5
31	A Novel Empirical Model for CMOS Schottky Diodes up to 67 GHz. IEEE Transactions on Electron Devices, 2019, 66, 4660-4665.	1.6	1
32	Dominant Influence of Interface Roughness Scattering on the Performance of GaN Terahertz Quantum Cascade Lasers. Nanoscale Research Letters, 2019, 14, 206.	3.1	11
33	"Tree to Boneâ€ŧ Lignin/Polycaprolactone Nanofibers for Hydroxyapatite Biomineralization. Biomacromolecules, 2019, 20, 2684-2693.	2.6	82
34	Repeatable asymmetric resonant tunneling in AlGaN/GaN double barrier structures grown on sapphire. Applied Physics Letters, 2019, 114, .	1.5	17
35	Repeatable Room Temperature Negative Differential Resistance in AlN/GaN Resonant Tunneling Diodes Grown on Sapphire. Advanced Electronic Materials, 2019, 5, 1800651.	2.6	32
36	Thioflavin Tâ€Amyloid Hybrid Nanostructure for Biocatalytic Photosynthesis. Small, 2018, 14, e1801396.	5.2	27

DING WANG

#	Article	IF	CITATIONS
37	Highâ€Mobility Twoâ€Dimensional Electron Gas at InGaN/InN Heterointerface Grown by Molecular Beam Epitaxy. Advanced Science, 2018, 5, 1800844.	5.6	18
38	Enhanced wear resistance by combined ultrasonic impact and electro-spark melting. Surface Engineering, 2017, 33, 903-910.	1.1	3
39	Experimental investigation of an I band all cavity axial extraction relativistic magnetron. , 2017, , .		0
40	"Colossal―Interstitial Supersaturation in Delta Ferrite in 17-7 PH Stainless Steels After Low-temperature Nitridation. Microscopy and Microanalysis, 2016, 22, 2020-2023.	0.2	0
41	Experimental Investigation and Thermodynamic Calculation of the Phase Equilibria in the Cu-Nb-Zr Ternary System. Journal of Phase Equilibria and Diffusion, 2016, 37, 513-523.	0.5	6
42	Experimental Investigation of the Phase Equilibria in the Co-Nb-V Ternary System. Journal of Phase Equilibria and Diffusion, 2015, 36, 592-598.	0.5	7
43	Selective deposition of nanocrystalline carbon films on GaN diodes in photocatalytic reactions. CrystEngComm, 2014, 16, 10097-10102.	1.3	3
44	Colossal Carbon Supersaturation of Delta Ferrite in 17-7 PH Stainless Steel. Microscopy and Microanalysis, 2014, 20, 2102-2103.	0.2	1
45	Temperature profiles of low-temperature alloy irradiated by pulsed ion beams. Nuclear Instruments & Methods in Physics Research B, 2013, 307, 499-502.	0.6	3
46	Generating ultrabroadband terahertz radiation based on the under-compression mode of velocity bunching. Review of Scientific Instruments, 2013, 84, 022704.	0.6	4
47	A simple gel route to synthesize nano-Li4Ti5O12 as a high-performance anode material for Li-ion batteries. Journal of Materials Science, 2009, 44, 198-203.	1.7	55
48	Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology, 2008, 19, 075609.	1.3	282
49	Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12428-12433.	3.3	113
50	Reply to Comments by J. Román Galdámez on J. Chem. Eng. Data 2007, 52, 368â^'372. Journal of Chemical & Engineering Data, 2007, 52, 2096-2097.	1.0	0
51	Strategy for pinpointing the best glass-forming alloys. Applied Physics Letters, 2005, 86, 191906.	1.5	88
52	Single nucleotide polymorphism discrimination assisted by improved base stacking hybridization using oligonucleotide microarrays. BioTechniques, 2003, 35, 300-308.	0.8	12
53	Pulse-parameter dependence of the configuration characteristics of a micro-structure in fused SiO 2 induced by femtosecond laser pulses. Applied Physics A: Materials Science and Processing, 2002, 74, 497-501.	1.1	8
54	Diffraction Effects from [111] Twist Boundaries in Gold. Materials Research Society Symposia Proceedings, 1990, 209, 47.	0.1	0

#	Article	IF	CITATIONS
55	Calculation of Diffraction Effects Due to Double Positioning in (111) Gold Bicrystals. Physica Status Solidi (B): Basic Research, 1990, 161, 501-511.	0.7	1