Ding Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8764992/publications.pdf

Version: 2024-02-01

		471061	377514
55	1,246	17	34
papers	citations	h-index	g-index
56	56	56	1614
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology, 2008, 19, 075609.	1.3	282
2	Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12428-12433.	3.3	113
3	Strategy for pinpointing the best glass-forming alloys. Applied Physics Letters, 2005, 86, 191906.	1.5	88
4	"Tree to Bone― Lignin/Polycaprolactone Nanofibers for Hydroxyapatite Biomineralization. Biomacromolecules, 2019, 20, 2684-2693.	2.6	82
5	Fully epitaxial ferroelectric ScAlN grown by molecular beam epitaxy. Applied Physics Letters, 2021, 118, .	1.5	71
6	A simple gel route to synthesize nano-Li4Ti5O12 as a high-performance anode material for Li-ion batteries. Journal of Materials Science, 2009, 44, 198-203.	1.7	55
7	"Waste to Wealth― Lignin as a Renewable Building Block for Energy Harvesting/Storage and Environmental Remediation. ChemSusChem, 2020, 13, 2807-2827.	3.6	55
8	An Epitaxial Ferroelectric ScAlN/GaN Heterostructure Memory. Advanced Electronic Materials, 2022, 8, .	2.6	37
9	Fully epitaxial ferroelectric ScGaN grown on GaN by molecular beam epitaxy. Applied Physics Letters, 2021, 119, .	1.5	35
10	Repeatable Room Temperature Negative Differential Resistance in AlN/GaN Resonant Tunneling Diodes Grown on Sapphire. Advanced Electronic Materials, 2019, 5, 1800651.	2.6	32
11	Thioflavin Tâ€Amyloid Hybrid Nanostructure for Biocatalytic Photosynthesis. Small, 2018, 14, e1801396.	5. 2	27
12	N-polar ScAlN and HEMTs grown by molecular beam epitaxy. Applied Physics Letters, 2021, 119, .	1.5	27
13	Lignin-fueled photoelectrochemical platform for light-driven redox biotransformation. Green Chemistry, 2020, 22, 5151-5160.	4.6	24
14	Oxygen defect dominated photoluminescence emission of Sc <i>x</i> Allâ^' <i>x</i> N grown by molecular beam epitaxy. Applied Physics Letters, 2021, 118, .	1.5	22
15	Scalable Synthesis of Monolayer Hexagonal Boron Nitride on Graphene with Giant Bandgap Renormalization. Advanced Materials, 2022, 34, e2201387.	11.1	22
16	Experimental Evidence of Large Bandgap Energy in Atomically Thin AlN. Advanced Functional Materials, 2019, 29, 1902608.	7.8	21
17	Highâ€Mobility Twoâ€Dimensional Electron Gas at InGaN/InN Heterointerface Grown by Molecular Beam Epitaxy. Advanced Science, 2018, 5, 1800844.	5 . 6	18
18	Repeatable asymmetric resonant tunneling in AlGaN/GaN double barrier structures grown on sapphire. Applied Physics Letters, 2019, 114, .	1.5	17

#	Article	IF	CITATIONS
19	Quaternary alloy ScAlGaN: A promising strategy to improve the quality of ScAlN. Applied Physics Letters, 2022, 120, .	1.5	16
20	Ferroelectric N-polar ScAlN/GaN heterostructures grown by molecular beam epitaxy. Applied Physics Letters, 2022, 121, .	1.5	15
21	Enhancing CO2 plasma conversion using metal grid catalysts. Journal of Applied Physics, 2021, 129, .	1.1	14
22	A GaN/AlN quantum cascade detector with a broad response from the mid-infrared (4.1 Î⅓m) to the visible (550 nm) spectral range. Applied Physics Letters, 2020, 116, 171102.	1.5	13
23	Interfacial Modulated Lattice-Polarity-Controlled Epitaxy of III-Nitride Heterostructures on Si(111). ACS Applied Materials & Interfaces, 2022, 14, 15747-15755.	4.0	13
24	The trigger and data acquisition system of the FASER experiment. Journal of Instrumentation, 2021, 16, P12028.	0.5	13
25	Single nucleotide polymorphism discrimination assisted by improved base stacking hybridization using oligonucleotide microarrays. BioTechniques, 2003, 35, 300-308.	0.8	12
26	Controlling Phaseâ€Coherent Electron Transport in IIIâ€Nitrides: Toward Room Temperature Negative Differential Resistance in AlGaN/GaN Double Barrier Structures. Advanced Functional Materials, 2021, 31, 2007216.	7.8	12
27	Lignin-Induced CaCO ₃ Vaterite Structure for Biocatalytic Artificial Photosynthesis. ACS Applied Materials & Divergence (1988) Applied &	4.0	12
28	Dominant Influence of Interface Roughness Scattering on the Performance of GaN Terahertz Quantum Cascade Lasers. Nanoscale Research Letters, 2019, 14, 206.	3.1	11
29	Pulse-parameter dependence of the configuration characteristics of a micro-structure in fused SiO 2 induced by femtosecond laser pulses. Applied Physics A: Materials Science and Processing, 2002, 74, 497-501.	1.1	8
30	III-nitrides based resonant tunneling diodes. Journal Physics D: Applied Physics, 2020, 53, 253002.	1.3	8
31	Synthesis and Characterization of High-Purity Mesoporous Alumina with Excellent Adsorption Capacity for Congo Red. Materials, 2022, 15, 970.	1.3	8
32	Experimental Investigation of the Phase Equilibria in the Co-Nb-V Ternary System. Journal of Phase Equilibria and Diffusion, 2015, 36, 592-598.	0.5	7
33	Full-composition-graded InxGa1â^'xN films grown by molecular beam epitaxy. Applied Physics Letters, 2020, 117, 182101.	1.5	7
34	Experimental Investigation and Thermodynamic Calculation of the Phase Equilibria in the Cu-Nb-Zr Ternary System. Journal of Phase Equilibria and Diffusion, 2016, 37, 513-523.	0.5	6
35	Microstructure and dislocation evolution in composition gradient AlGaN grown by MOCVD. Superlattices and Microstructures, 2021, 152, 106842.	1.4	6
36	Planar anisotropic Shubnikov-de-Haas oscillations of two-dimensional electron gas in AlN/GaN heterostructure. Applied Physics Letters, 2019, 115, 152107.	1.5	5

#	Article	IF	CITATIONS
37	Generating ultrabroadband terahertz radiation based on the under-compression mode of velocity bunching. Review of Scientific Instruments, 2013, 84, 022704.	0.6	4
38	Study on the Synthesis of High-Purity \hat{I}^3 -Phase Mesoporous Alumina with Excellent CO2 Adsorption Performance via a Simple Method Using Industrial Aluminum Oxide as Raw Material. Materials, 2021, 14, 5465.	1.3	4
39	High-Order Sezawa Mode Alscn/Gan/Sapphire Surface Acoustic Wave Resonators. , 2022, , .		4
40	Temperature profiles of low-temperature alloy irradiated by pulsed ion beams. Nuclear Instruments & Methods in Physics Research B, 2013, 307, 499-502.	0.6	3
41	Selective deposition of nanocrystalline carbon films on GaN diodes in photocatalytic reactions. CrystEngComm, 2014, 16, 10097-10102.	1.3	3
42	Enhanced wear resistance by combined ultrasonic impact and electro-spark melting. Surface Engineering, 2017, 33, 903-910.	1.1	3
43	The long-term effect of dental treatment under general anaesthesia or physical restraints on children's dental anxiety and behaviour European Journal of Paediatric Dentistry, 2022, 23, 27-32.	0.4	3
44	Study on Oxygen Evolution Reaction Performance of Jarosite/C Composites. Materials, 2022, 15, 668.	1.3	2
45	Prevalence and potential risk factors of chronic pruritus among community middleâ€aged and older population in Beijing, China. Journal of the European Academy of Dermatology and Venereology, 2022, 36, 1074-1079.	1.3	2
46	Calculation of Diffraction Effects Due to Double Positioning in (111) Gold Bicrystals. Physica Status Solidi (B): Basic Research, 1990, 161, 501-511.	0.7	1
47	Colossal Carbon Supersaturation of Delta Ferrite in 17-7 PH Stainless Steel. Microscopy and Microanalysis, 2014, 20, 2102-2103.	0.2	1
48	A Novel Empirical Model for CMOS Schottky Diodes up to 67 GHz. IEEE Transactions on Electron Devices, 2019, 66, 4660-4665.	1.6	1
49	The effect of kink and vertical leakage mechanisms in GaN-on-Si epitaxial layers. Semiconductor Science and Technology, 2020, 35, 085015.	1.0	1
50	Diffraction Effects from [111] Twist Boundaries in Gold. Materials Research Society Symposia Proceedings, 1990, 209, 47.	0.1	0
51	Reply to Comments by J. Román Galdámez on J. Chem. Eng. Data 2007, 52, 368â°372. Journal of Chemical & Lamp; Engineering Data, 2007, 52, 2096-2097.	1.0	0
52	"Colossal―Interstitial Supersaturation in Delta Ferrite in 17-7 PH Stainless Steels After Low-temperature Nitridation. Microscopy and Microanalysis, 2016, 22, 2020-2023.	0.2	0
53	Experimental investigation of an l band all cavity axial extraction relativistic magnetron. , 2017, , .		0
54	Preparation of High-Purity Mesoporous Alumina Material with Industrial Al(OH)3 via Ion Exchange. Transactions of the Indian Institute of Metals, 2022, 75, 771-781.	0.7	0

#	Article	lF	CITATIONS
55	Development of a High-Energy X-Ray Backlighting System for Z-Pinch Experiments. Fusion Science and Technology, 2022, 78, 468-474.	0.6	O