
U Valentin Nägerl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/876496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deciphering the functional nanoâ€anatomy of the tripartite synapse using <scp>s</scp> timulated emission depletion microscopy. Glia, 2022, 70, 607-618.	2.5	13
2	Neurophotonic Tools for Microscopic Measurements and Manipulation: Status Report. Neurophotonics, 2022, 9, 013001.	1.7	17
3	Turning up the Green Light. Trends in Cell Biology, 2021, 31, 143-145.	3.6	0
4	Nanoscale imaging of the functional anatomy of the brain. Neuroforum, 2021, .	0.2	3
5	Superâ€resolution shadow imaging reveals local remodeling of astrocytic microstructures and brain extracellular space after osmotic challenge. Glia, 2021, 69, 1605-1613.	2.5	33
6	Cover Image, Volume 69, Issue 6. Glia, 2021, 69, C1.	2.5	0
7	Simulation of Astrocytic Calcium Dynamics in Lattice Light Sheet Microscopy Images. , 2021, , .		2
8	Aberration correction in stimulated emission depletion microscopy to increase imaging depth in living brain tissue. Neurophotonics, 2021, 8, 035001.	1.7	14
9	Ultrastructural Imaging of Activity-Dependent Synaptic Membrane-Trafficking Events in Cultured Brain Slices. Neuron, 2020, 108, 843-860.e8.	3.8	42
10	LTP Induction Boosts Glutamate Spillover by Driving Withdrawal of Perisynaptic Astroglia. Neuron, 2020, 108, 919-936.e11.	3.8	159
11	Salivary gland macrophages and tissue-resident CD8 ⁺ T cells cooperate for homeostatic organ surveillance. Science Immunology, 2020, 5, .	5.6	57
12	SpineJ: A software tool for quantitative analysis of nanoscale spine morphology. Methods, 2020, 174, 49-55.	1.9	33
13	A simple tissue clearing method for increasing the depth penetration of STED microscopy of fixed brain slices. Journal Physics D: Applied Physics, 2020, 53, 184001.	1.3	10
14	Structural basis of astrocytic Ca2+ signals at tripartite synapses. Nature Communications, 2020, 11, 1906.	5.8	133
15	Simulation of calcium signaling in fine astrocytic processes: Effect of spatial properties on spontaneous activity. PLoS Computational Biology, 2019, 15, e1006795.	1.5	50
16	A super-resolution platform for correlative live single-molecule imaging and STED microscopy. Nature Methods, 2019, 16, 1263-1268.	9.0	53
17	Lattice light sheet microscopy and photo-stimulation in brain slices. , 2019, , .		10
18	Super-Resolution Imaging of the Extracellular Space in Living Brain Tissue. Cell, 2018, 172, 1108-1121.e15.	13.5	219

U Valentin NÃ**ë**erl

#	Article	IF	CITATIONS
19	Evidence for altered dendritic spine compartmentalization in Alzheimer's disease and functional effects in a mouse model. Acta Neuropathologica, 2018, 135, 839-854.	3.9	60
20	Unveiling the Extracellular Space of the Brain: From Super-resolved Microstructure to <i>In Vivo</i> Function. Journal of Neuroscience, 2018, 38, 9355-9363.	1.7	79
21	Chronic 2P-STED imaging reveals high turnover of dendritic spines in the hippocampus in vivo. ELife, 2018, 7, .	2.8	130
22	Superresolution imaging reveals activity-dependent plasticity of axon morphology linked to changes in action potential conduction velocity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1401-1406.	3.3	108
23	APC/C ^{Cdh1} -Rock2 pathway controls dendritic integrity and memory. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4513-4518.	3.3	44
24	Two-Photon STED Microscopy for Nanoscale Imaging of Neural Morphology In Vivo. Methods in Molecular Biology, 2017, 1663, 45-64.	0.4	21
25	Dendritic Spines as Tunable Regulators of Synaptic Signals. Frontiers in Psychiatry, 2016, 7, 101.	1.3	109
26	Induction of hippocampal long-term potentiation increases the morphological dynamics of microglial processes and prolongs their contacts with dendritic spines. Scientific Reports, 2016, 6, 32422.	1.6	57
27	Special Section Guest Editorial: Super-resolution microscopy of neural structure and function. Neurophotonics, 2016, 3, 041801.	1.7	2
28	Early synaptic deficits in the APP/PS1 mouse model of Alzheimer's disease involve neuronal adenosine A2A receptors. Nature Communications, 2016, 7, 11915.	5.8	184
29	Spines slow down dendritic chloride diffusion and affect short-term ionic plasticity of GABAergic inhibition. Scientific Reports, 2016, 6, 23196.	1.6	31
30	Biochemical compartmentalization in dendrites. , 2016, , 285-324.		2
31	Altered morphological dynamics of activated microglia after induction of status epilepticus. Journal of Neuroinflammation, 2015, 12, 202.	3.1	66
32	STED microscopy for nanoscale imaging in living brain slices. Methods, 2015, 88, 57-66.	1.9	40
33	Convergence of Hippocampal Pathophysiology in <i>Syngap</i> ^{+/â^²} and <i>Fmr1</i> ^{â^²/<i>y</i>} Mice. Journal of Neuroscience, 2015, 35, 15073-15081.	1.7	76
34	Spine neck plasticity regulates compartmentalization of synapses. Nature Neuroscience, 2014, 17, 678-685.	7.1	362
35	Stimulated Emission Depletion (STED) Microscopy Reveals Nanoscale Defects in the Developmental Trajectory of Dendritic Spine Morphogenesis in a Mouse Model of Fragile X Syndrome. Journal of Neuroscience, 2014, 34, 6405-6412.	1.7	57
36	Dissecting tripartite synapses with STED microscopy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130597.	1.8	55

U VALENTIN NÃ**ë**erl

#	Article	IF	CITATIONS
37	Two-Photon Excitation STED Microscopy in Two Colors in Acute Brain Slices. Biophysical Journal, 2013, 104, 778-785.	0.2	123
38	Superresolution imaging for neuroscience. Experimental Neurology, 2013, 242, 33-40.	2.0	71
39	Two-Color STED Imaging of Synapses in Living Brain Slices. Methods in Molecular Biology, 2013, 950, 65-80.	0.4	10
40	3SBA-04 STED imaging of synapses in living brain slices : from structure to function(3SBA Cutting-edge) Tj ETQqC Butsuri, 2013, 53, S102.	0 0 rgBT 0.0	/Overlock 10 0
41	Beyond Abbe's Resolution Barrier. , 2012, , 35-54.		1
42	Stimulated Emission Depletion (STED) Imaging of Dendritic Spines in Living Hippocampal Slices. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot069260.	0.2	6
43	STED Nanoscopy of Actin Dynamics in Synapses Deep Inside Living Brain Slices. Biophysical Journal, 2011, 101, 1277-1284.	0.2	270
44	Two-Color STED Microscopy of Living Synapses Using A Single Laser-Beam Pair. Biophysical Journal, 2011, 101, 2545-2552.	0.2	121
45	A Clobal Spatial Similarity Optimization Scheme to Track Large Numbers of Dendritic Spines in Time-Lapse Confocal Microscopy. IEEE Transactions on Medical Imaging, 2011, 30, 632-641.	5.4	13
46	<i>In Vivo</i> Imaging of Intersynaptic Vesicle Exchange Using VGLUT1 ^{Venus} Knock-In Mice. Journal of Neuroscience, 2011, 31, 15544-15559.	1.7	88
47	Knowledge-Based Morphology Quantification of STED Dendritic Spine Images. IFMBE Proceedings, 2011, , 1210-1213.	0.2	0
48	Imaging Living Synapses at the Nanoscale by STED Microscopy. Journal of Neuroscience, 2010, 30, 9341-9346.	1.7	47
49	STED Nanoscopy in Living Cells using Live Cell Compatible Markers. Biophysical Journal, 2009, 96, 17a.	0.2	0
50	LTD Induction Causes Morphological Changes of Presynaptic Boutons and Reduces Their Contacts with Spines. Neuron, 2008, 60, 590-597.	3.8	131
51	Live-cell imaging of dendritic spines by STED microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18982-18987.	3.3	364
52	Protracted Synaptogenesis after Activity-Dependent Spinogenesis in Hippocampal Neurons. Journal of Neuroscience, 2007, 27, 8149-8156.	1.7	153
53	A Balance of Protein Synthesis and Proteasome-Dependent Degradation Determines the Maintenance of LTP. Neuron, 2006, 52, 239-245.	3.8	272
54	Neuronal activity determines the protein synthesis dependence of long-term potentiation. Nature Neuroscience, 2006, 9, 478-480.	7.1	135

U VALENTIN NÃ**ë**erl

#	Article	IF	CITATIONS
55	Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion. Journal of Experimental Medicine, 2005, 201, 1805-1814.	4.2	249
56	Competing for Memory. Neuron, 2004, 44, 1011-1020.	3.8	92
57	Bidirectional Activity-Dependent Morphological Plasticity in Hippocampal Neurons. Neuron, 2004, 44, 759-767.	3.8	517
58	Competing for MemoryHippocampal LTP under Regimes of Reduced Protein Synthesis. Neuron, 2004, 44, 1011-1020.	3.8	124
59	Surviving Granule Cells of the Sclerotic Human Hippocampus Have Reduced Ca ²⁺ Influx Because of a Loss of Calbindin-D _{28k} in Temporal Lobe Epilepsy. Journal of Neuroscience, 2000, 20, 1831-1836.	1.7	137
60	Binding Kinetics of Calbindin-D28k Determined by Flash Photolysis of Caged Ca2+. Biophysical Journal, 2000, 79, 3009-3018.	0.2	176
61	Calcium-dependent inactivation of high-threshold calcium currents in human dentate gyrus granule cells. Journal of Physiology, 1998, 509, 39-45.	1.3	38
62	Structural Basis of Astrocytic Ca ² Signals at Tripartite Synapses. SSRN Electronic Journal, 0, , .	0.4	2