Pierre Friedlingstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8764937/publications.pdf Version: 2024-02-01

		1536	1009
242	67,681	106	236
papers	citations	h-index	g-index
327	327	327	47370
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Can a strong atmospheric CO ₂ rectifier effect be reconciled with a "reasonable" carbon budget?. Tellus, Series B: Chemical and Physical Meteorology, 2022, 51, 249.	1.6	34
2	How positive is the feedback between climate change and the carbon cycle?. Tellus, Series B: Chemical and Physical Meteorology, 2022, 55, 692.	1.6	67
3	The relationship between peak warming and cumulative CO ₂ emissions, and its use to quantify vulnerabilities in the carbon–climate–human system. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 145.	1.6	58
4	Vegetation responses to climate extremes recorded by remotely sensed atmospheric formaldehyde. Global Change Biology, 2022, 28, 1809-1822.	9.5	14
5	Three-dimensional transport and concentration of SF ₆ A model intercomparison study (TransCom 2). Tellus, Series B: Chemical and Physical Meteorology, 2022, 51, 266.	1.6	88
6	Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets. Npj Climate and Atmospheric Science, 2022, 5, 5.	6.8	36
7	Are Landâ€Use Change Emissions in Southeast Asia Decreasing or Increasing?. Global Biogeochemical Cycles, 2022, 36, .	4.9	7
8	Fragmentation-Driven Divergent Trends in Burned Area in Amazonia and Cerrado. Frontiers in Forests and Global Change, 2022, 5, .	2.3	8
9	Global fossil carbon emissions rebound near pre-COVID-19 levels. Environmental Research Letters, 2022, 17, 031001.	5.2	42
10	Are Terrestrial Biosphere Models Fit for Simulating the Global Land Carbon Sink?. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	28
11	Investigating the response of leaf area index to droughts in southern African vegetation using observations and model simulations. Hydrology and Earth System Sciences, 2022, 26, 2045-2071.	4.9	5
12	Global Carbon Budget 2021. Earth System Science Data, 2022, 14, 1917-2005.	9.9	663
13	Global patterns of daily CO2 emissions reductions in the first year of COVID-19. Nature Geoscience, 2022, 15, 615-620.	12.9	46
14	Leaching of dissolved organic carbon from mineral soils plays a significant role in the terrestrial carbon balance. Global Change Biology, 2021, 27, 1083-1096.	9.5	47
15	Ten new insights in climate science 2020 â \in " a horizon scan. Global Sustainability, 2021, 4, .	3.3	17
16	Peak growing season patterns and climate extremes-driven responses of gross primary production estimated by satellite and process based models over North America. Agricultural and Forest Meteorology, 2021, 298-299, 108292.	4.8	12
17	Predictable Variations of the Carbon Sinks and Atmospheric CO ₂ Growth in a Multiâ€Model Framework. Geophysical Research Letters, 2021, 48, e2020GL090695.	4.0	17
18	Climate model projections from the Scenario Model Intercomparison ProjectÂ(ScenarioMIP) of CMIP6. Earth System Dynamics, 2021, 12, 253-293.	7.1	236

#	Article	IF	CITATIONS
19	Fossil CO2 emissions in the post-COVID-19 era. Nature Climate Change, 2021, 11, 197-199.	18.8	171
20	JULES-CN: a coupled terrestrial carbon–nitrogen scheme (JULES vn5.1). Geoscientific Model Development, 2021, 14, 2161-2186.	3.6	32
21	Greening drylands despite warming consistent with carbon dioxide fertilization effect. Global Change Biology, 2021, 27, 3336-3349.	9.5	50
22	Linking global terrestrial CO ₂ fluxes and environmental drivers: inferences from the Orbiting Carbon ObservatoryÂ2 satellite and terrestrial biospheric models. Atmospheric Chemistry and Physics, 2021, 21, 6663-6680.	4.9	10
23	Five years of variability in the global carbon cycle: comparing an estimate from the Orbiting Carbon Observatory-2 and process-based models. Environmental Research Letters, 2021, 16, 054041.	5.2	8
24	A multi-data assessment of land use and land cover emissions from Brazil during 2000–2019. Environmental Research Letters, 2021, 16, 074004.	5.2	33
25	Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO ₂ . Biogeosciences, 2021, 18, 4985-5010.	3.3	49
26	Quantifying non-CO2 contributions to remaining carbon budgets. Npj Climate and Atmospheric Science, 2021, 4, .	6.8	10
27	Response of global land evapotranspiration to climate change, elevated CO2, and land use change. Agricultural and Forest Meteorology, 2021, 311, 108663.	4.8	39
28	Aerosol–light interactions reduce the carbon budget imbalance. Environmental Research Letters, 2021, 16, 124072.	5.2	10
29	Process-based analysis of terrestrial carbon flux predictability. Earth System Dynamics, 2021, 12, 1413-1426.	7.1	2
30	Interannual variation of terrestrial carbon cycle: Issues and perspectives. Global Change Biology, 2020, 26, 300-318.	9.5	214
31	State of the science in reconciling topâ€down and bottomâ€up approaches for terrestrial CO ₂ budget. Global Change Biology, 2020, 26, 1068-1084.	9.5	43
32	Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nature Climate Change, 2020, 10, 3-6.	18.8	324
33	Forest production efficiency increases with growth temperature. Nature Communications, 2020, 11, 5322.	12.8	57
34	Global carbon budgets: determining limits on fossil fuel emissions. Weather, 2020, 75, 210-211.	0.7	5
35	Climateâ€Driven Variability and Trends in Plant Productivity Over Recent Decades Based on Three Global Products. Global Biogeochemical Cycles, 2020, 34, e2020GB006613.	4.9	36
36	Opportunities and challenges in using remaining carbon budgets to guide climate policy. Nature Geoscience, 2020, 13, 769-779.	12.9	68

#	Article	IF	CITATIONS
37	How Simulations of the Land Carbon Sink Are Biased by Ignoring Fluvial Carbon Transfers: A Case Study for the Amazon Basin. One Earth, 2020, 3, 226-236.	6.8	26
38	Constraining Uncertainty in Projected Gross Primary Production With Machine Learning. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005619.	3.0	21
39	A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming. Nature Communications, 2020, 11, 5544.	12.8	50
40	Impacts of extreme summers on European ecosystems: a comparative analysis of 2003, 2010 and 2018. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190507.	4.0	64
41	Recent global decline of CO ₂ fertilization effects on vegetation photosynthesis. Science, 2020, 370, 1295-1300.	12.6	317
42	Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nature Climate Change, 2020, 10, 647-653.	18.8	1,408
43	Comparison of forest aboveâ€ground biomass from dynamic global vegetation models with spatially explicit remotely sensed observationâ€based estimates. Global Change Biology, 2020, 26, 3997-4012.	9.5	25
44	Causes of slowingâ€down seasonal CO ₂ amplitude at Mauna Loa. Global Change Biology, 2020, 26, 4462-4477.	9.5	14
45	Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Science Advances, 2020, 6, eaba2724.	10.3	229
46	Increased control of vegetation on global terrestrial energy fluxes. Nature Climate Change, 2020, 10, 356-362.	18.8	152
47	Enhanced regional terrestrial carbon uptake over Korea revealed by atmospheric CO 2 measurements from 1999 to 2017. Global Change Biology, 2020, 26, 3368-3383.	9.5	7
48	The Global Distribution of Biological Nitrogen Fixation in Terrestrial Natural Ecosystems. Global Biogeochemical Cycles, 2020, 34, e2019GB006387.	4.9	77
49	Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrology and Earth System Sciences, 2020, 24, 1485-1509.	4.9	130
50	Sources of Uncertainty in Regional and Global Terrestrial CO ₂ Exchange Estimates. Global Biogeochemical Cycles, 2020, 34, e2019GB006393.	4.9	59
51	Quantifying process-level uncertainty contributions to TCRE and carbon budgets for meeting Paris Agreement climate targets. Environmental Research Letters, 2020, 15, 074019.	5.2	27
52	Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences, 2020, 17, 4173-4222.	3.3	255
53	Nitrogen cycling in CMIP6 land surface models: progress and limitations. Biogeosciences, 2020, 17, 5129-5148.	3.3	60
54	Spatially resolved evaluation of Earth system models with satellite column-averaged CO ₂ . Biogeosciences, 2020, 17, 6115-6144.	3.3	8

#	Article	IF	CITATIONS
55	Global Carbon Budget 2020. Earth System Science Data, 2020, 12, 3269-3340.	9.9	1,477
56	ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation. Earth System Dynamics, 2019, 10, 379-452.	7.1	46
57	Comment on "The global tree restoration potential― Science, 2019, 366, .	12.6	67
58	Contrasting effects of CO ₂ fertilization, land-use change and warming on seasonal amplitude of Northern Hemisphere CO ₂ exchange. Atmospheric Chemistry and Physics, 2019, 19, 12361-12375.	4.9	30
59	Negative extreme events in gross primary productivity and their drivers in China during the past three decades. Agricultural and Forest Meteorology, 2019, 275, 47-58.	4.8	40
60	Controlling factors for land productivity under extreme climatic events in continental Europe and the Mediterranean Basin. Catena, 2019, 182, 104124.	5.0	14
61	Growing season extension affects ozone uptake by European forests. Science of the Total Environment, 2019, 669, 1043-1052.	8.0	27
62	Persistent fossil fuel growth threatens the Paris Agreement and planetary health. Environmental Research Letters, 2019, 14, 121001.	5.2	133
63	Global trends in carbon sinks and their relationships with CO2 and temperature. Nature Climate Change, 2019, 9, 73-79.	18.8	163
64	Global Carbon Budget 2019. Earth System Science Data, 2019, 11, 1783-1838.	9.9	1,159
65	Recent Changes in Global Photosynthesis and Terrestrial Ecosystem Respiration Constrained From Multiple Observations. Geophysical Research Letters, 2018, 45, 1058-1068.	4.0	19
66	The utility of the historical record for assessing the transient climate response to cumulative emissions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160449.	3.4	24
67	Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5°C and 2°C global warming with a higher-resolution global climate model. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160452.	3.4	110
68	Land use change and El Niño-Southern Oscillation drive decadal carbon balance shifts in Southeast Asia. Nature Communications, 2018, 9, 1154.	12.8	28
69	Reply to â€~Interpretations of the Paris climate target'. Nature Geoscience, 2018, 11, 222-222.	12.9	8
70	On the causes of trends in the seasonal amplitude of atmospheric <scp>CO</scp> ₂ . Global Change Biology, 2018, 24, 608-616.	9.5	48
71	Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature, 2018, 562, 110-114.	27.8	240
72	Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks. Nature Climate Change, 2018, 8, 914-920.	18.8	101

#	Article	IF	CITATIONS
73	Impact of the 2015/2016 El Niño on the terrestrial carbon cycle constrained by bottom-up and top-down approaches. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170304.	4.0	63
74	Contrasting interannual atmospheric CO ₂ variabilities and their terrestrial mechanisms for two types of El Niños. Atmospheric Chemistry and Physics, 2018, 18, 10333-10345.	4.9	17
75	Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nature Climate Change, 2018, 8, 907-913.	18.8	188
76	Representation of dissolved organic carbon in the JULES land surface model (vn4.4_JULES-DOCM). Geoscientific Model Development, 2018, 11, 593-609.	3.6	21
77	Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional types. Geoscientific Model Development, 2018, 11, 2857-2873.	3.6	49
78	Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nature Geoscience, 2018, 11, 739-743.	12.9	110
79	Large cale Droughts Responsible for Dramatic Reductions of Terrestrial Net Carbon Uptake Over North America in 2011 and 2012. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2053-2071.	3.0	35
80	Global Carbon Budget 2018. Earth System Science Data, 2018, 10, 2141-2194.	9.9	1,167
81	Global Carbon Budget 2017. Earth System Science Data, 2018, 10, 405-448.	9.9	801
82	Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nature Climate Change, 2017, 7, 148-152.	18.8	151
83	Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nature Geoscience, 2017, 10, 79-84.	12.9	284
84	Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature, 2017, 541, 516-520.	27.8	480
85	Benchmarking CMIP5 models with a subset of ESA CCI Phase 2 data using the ESMValTool. Remote Sensing of Environment, 2017, 203, 9-39.	11.0	34
86	Estimating Carbon Budgets for Ambitious Climate Targets. Current Climate Change Reports, 2017, 3, 69-77.	8.6	52
87	An observation-based constraint on permafrost loss as a function of global warming. Nature Climate Change, 2017, 7, 340-344.	18.8	257
88	Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nature Climate Change, 2017, 7, 432-436.	18.8	323
89	Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nature Geoscience, 2017, 10, 741-747.	12.9	422
90	Towards real-time verification of CO2 emissions. Nature Climate Change, 2017, 7, 848-850.	18.8	168

#	Article	IF	CITATIONS
91	A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions. Atmospheric Chemistry and Physics, 2017, 17, 7213-7228.	4.9	120
92	Quantifying uncertainties of permafrost carbon–climate feedbacks. Biogeosciences, 2017, 14, 3051-3066.	3.3	59
93	The decreasing range between dry- and wet- season precipitation over land and its effect on vegetation primary productivity. PLoS ONE, 2017, 12, e0190304.	2.5	27
94	C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6. Geoscientific Model Development, 2016, 9, 2853-2880.	3.6	186
95	Role of CO ₂ , climate and land use in regulating the seasonal amplitude increase of carbon fluxes in terrestrial ecosystems: a multimodel analysis. Biogeosciences, 2016, 13, 5121-5137.	3.3	26
96	The carbon cycle in Mexico: past, present and future of C stocks and fluxes. Biogeosciences, 2016, 13, 223-238.	3.3	24
97	The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 2016, 9, 3461-3482.	3.6	2,084
98	ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP. Geoscientific Model Development, 2016, 9, 1747-1802.	3.6	127
99	Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information. Geoscientific Model Development, 2016, 9, 2415-2440.	3.6	115
100	The status and challenge of global fire modelling. Biogeosciences, 2016, 13, 3359-3375.	3.3	274
101	Comparing concentrationâ€based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests. Global Change Biology, 2016, 22, 1608-1627.	9.5	83
102	The dry season intensity as a key driver of NPP trends. Geophysical Research Letters, 2016, 43, 2632-2639.	4.0	60
103	The terrestrial carbon budget of South and Southeast Asia. Environmental Research Letters, 2016, 11, 105006.	5.2	39
104	Simulating the Earth system response to negative emissions. Environmental Research Letters, 2016, 11, 095012.	5.2	98
105	Observation and integrated Earth-system science: A roadmap for 2016–2025. Advances in Space Research, 2016, 57, 2037-2103.	2.6	35
106	The cumulative carbon budget and its implications. Oxford Review of Economic Policy, 2016, 32, 323-342.	1.9	47
107	Greening of the Earth and its drivers. Nature Climate Change, 2016, 6, 791-795.	18.8	1,675
108	Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature, 2016, 538, 499-501.	27.8	137

#	Article	IF	CITATIONS
109	European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling. Nature Communications, 2016, 7, 10315.	12.8	74
110	Reducing uncertainties in decadal variability of the global carbon budget with multiple datasets. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13104-13108.	7.1	39
111	Mapping the climate change challenge. Nature Climate Change, 2016, 6, 663-668.	18.8	75
112	Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 2016, 6, 42-50.	18.8	973
113	Differences between carbon budget estimates unravelled. Nature Climate Change, 2016, 6, 245-252.	18.8	228
114	The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature, 2016, 531, 225-228.	27.8	402
115	Global Carbon Budget 2016. Earth System Science Data, 2016, 8, 605-649.	9.9	905
116	More frequent moments in the climate change debate as emissions continue. Environmental Research Letters, 2015, 10, 121001.	5.2	2
117	Spatiotemporal patterns of terrestrial gross primary production: A review. Reviews of Geophysics, 2015, 53, 785-818.	23.0	432
118	Multicriteria evaluation of discharge simulation in Dynamic Global Vegetation Models. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7488-7505.	3.3	25
119	Impact of model developments on present and future simulations of permafrost in a global land-surface model. Cryosphere, 2015, 9, 1505-1521.	3.9	54
120	Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences, 2015, 12, 653-679.	3.3	587
121	Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models. Biogeosciences, 2015, 12, 5211-5228.	3.3	81
122	The dominant role of semi-arid ecosystems in the trend and variability of the land CO ₂ sink. Science, 2015, 348, 895-899.	12.6	1,002
123	The Origin and Limits of the Near Proportionality between Climate Warming and Cumulative CO2 Emissions. Journal of Climate, 2015, 28, 4217-4230.	3.2	83
124	Measuring a fair and ambitious climate agreement using cumulative emissions. Environmental Research Letters, 2015, 10, 105004.	5.2	103
125	An improved representation of physical permafrost dynamics in the JULES land-surface model. Geoscientific Model Development, 2015, 8, 1493-1508.	3.6	79
126	Water-use efficiency and transpiration across European forests during the Anthropocene. Nature Climate Change, 2015, 5, 579-583.	18.8	357

#	Article	IF	CITATIONS
127	Carbon cycle feedbacks and future climate change. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140421.	3.4	67
128	Global Carbon Budget 2015. Earth System Science Data, 2015, 7, 349-396.	9.9	616
129	Global carbon budget 2014. Earth System Science Data, 2015, 7, 47-85.	9.9	463
130	Fractal properties of forest fires in Amazonia as a basis for modelling pan-tropical burnt area. Biogeosciences, 2014, 11, 1449-1459.	3.3	7
131	Global carbon budget 2013. Earth System Science Data, 2014, 6, 235-263.	9.9	311
132	Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 1: simulating historical global burned area and fire regimes. Geoscientific Model Development, 2014, 7, 2747-2767.	3.6	109
133	A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature, 2014, 506, 212-215.	27.8	284
134	Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks. Journal of Climate, 2014, 27, 511-526.	3.2	870
135	Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nature Communications, 2014, 5, 5018.	12.8	414
136	Persistent growth of CO2 emissions and implications for reaching climate targets. Nature Geoscience, 2014, 7, 709-715.	12.9	615
137	Sharing a quota on cumulative carbon emissions. Nature Climate Change, 2014, 4, 873-879.	18.8	295
138	Emergent constraints on climateâ€carbon cycle feedbacks in the CMIP5 Earth system models. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 794-807.	3.0	113
139	Long-Term Climate Change Commitment and Reversibility: An EMIC Intercomparison. Journal of Climate, 2013, 26, 5782-5809.	3.2	208
140	Assessing the Reliability of Climate Models, CMIP5. , 2013, , 237-248.		5
141	Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 2013, 494, 341-344.	27.8	608
142	Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Climate Dynamics, 2013, 40, 2123-2165.	3.8	1,425
143	Does the integration of the dynamic nitrogen cycle in a terrestrial biosphere model improve the long-term trend of the leaf area index?. Climate Dynamics, 2013, 40, 2535-2548.	3.8	8
144	Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models. Journal of Climate, 2013, 26, 6801-6843.	3.2	398

#	Article	IF	CITATIONS
145	Effect of Anthropogenic Land-Use and Land-Cover Changes on Climate and Land Carbon Storage in CMIP5 Projections for the Twenty-First Century. Journal of Climate, 2013, 26, 6859-6881.	3.2	329
146	Atmospheric Composition, Irreversible Climate Change, and Mitigation Policy. , 2013, , 415-436.		6
147	Attributing the increase in atmospheric CO2 to emitters and absorbers. Nature Climate Change, 2013, 3, 926-930.	18.8	63
148	Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 2013, 6, 597-607.	12.9	937
149	Carbon Dioxide and Climate: Perspectives on a Scientific Assessment. , 2013, , 391-413.		48
150	Evaluation of terrestrial carbon cycle models for their response to climate variability and to <scp><scp>CO₂</scp> </scp> trends. Global Change Biology, 2013, 19, 2117-2132.	9.5	617
151	A unifying conceptual model for the environmental responses of isoprene emissions from plants. Annals of Botany, 2013, 112, 1223-1238.	2.9	66
152	Carbon–Concentration and Carbon–Climate Feedbacks in CMIP5 Earth System Models. Journal of Climate, 2013, 26, 5289-5314.	3.2	576
153	Twenty-First-Century Compatible CO2 Emissions and Airborne Fraction Simulated by CMIP5 Earth System Models under Four Representative Concentration Pathways. Journal of Climate, 2013, 26, 4398-4413.	3.2	248
154	The global carbon budget 1959–2011. Earth System Science Data, 2013, 5, 165-185.	9.9	527
155	Evaluation of Land Surface Models in Reproducing Satellite-Derived LAI over the High-Latitude Northern Hemisphere. Part I: Uncoupled DGVMs. Remote Sensing, 2013, 5, 4819-4838.	4.0	82
156	Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models. Earth System Dynamics, 2013, 4, 95-108.	7.1	36
157	Delayed detection of climate mitigation benefits due to climate inertia and variability. Proceedings of the United States of America, 2013, 110, 17229-17234.	7.1	40
158	Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades. Environmental Research Letters, 2013, 8, 014008.	5.2	125
159	Evaluation of Land Surface Models in Reproducing Satellite Derived Leaf Area Index over the High-Latitude Northern Hemisphere. Part II: Earth System Models. Remote Sensing, 2013, 5, 3637-3661.	4.0	75
160	Evaluation of biospheric components in Earth system models using modern and palaeo-observations: the state-of-the-art. Biogeosciences, 2013, 10, 8305-8328.	3.3	11
161	Response to Comment on "Surface Urban Heat Island Across 419 Global Big Cities― Environmental Science & Technology, 2012, 46, 6889-6890.	10.0	15
162	Surface Urban Heat Island Across 419 Global Big Cities. Environmental Science & Technology, 2012, 46, 696-703.	10.0	864

#	Article	IF	CITATIONS
163	A global model for the uptake of atmospheric hydrogen by soils. Global Biogeochemical Cycles, 2012, 26, .	4.9	11
164	Predictability of biomass burning in response to climate changes. Global Biogeochemical Cycles, 2012, 26, .	4.9	201
165	Modelling sub-grid wetland in the ORCHIDEE global land surface model: evaluation against river discharges and remotely sensed data. Geoscientific Model Development, 2012, 5, 941-962.	3.6	58
166	A framework for benchmarking land models. Biogeosciences, 2012, 9, 3857-3874.	3.3	267
167	Limitations of single-basket trading: lessons from the Montreal Protocol for climate policy. Climatic Change, 2012, 111, 241-248.	3.6	40
168	How Good are Chemistry-Climate Models?. Research Topics in Aerospace, 2012, , 763-779.	0.7	0
169	Modeling fire and the terrestrial carbon balance. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	152
170	Long-term climate implications of twenty-first century options for carbon dioxide emissionÂmitigation. Nature Climate Change, 2011, 1, 457-461.	18.8	87
171	Contribution of climate change and rising CO2 to terrestrial carbon balance in East Asia: A multi-model analysis. Global and Planetary Change, 2011, 75, 133-142.	3.5	84
172	Late Holocene methane rise caused by orbitally controlled increase in tropical sources. Nature, 2011, 470, 82-85.	27.8	145
173	Climate-CH ₄ feedback from wetlands and its interaction with the climate-CO ₂ feedback. Biogeosciences, 2011, 8, 2137-2157.	3.3	90
174	The HadGEM2-ES implementation of CMIP5 centennial simulations. Geoscientific Model Development, 2011, 4, 543-570.	3.6	803
175	Forest annual carbon cost: reply. Ecology, 2011, 92, 1998-2002.	3.2	3
176	Permafrost carbon-climate feedbacks accelerate global warming. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14769-14774.	7.1	742
177	Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1240-1245.	7.1	432
178	Carbon–climate feedbacks: a review of model and observation based estimates. Current Opinion in Environmental Sustainability, 2010, 2, 251-257.	6.3	94
179	Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Climate Dynamics, 2010, 34, 1-26.	3.8	235
180	Interactions of the carbon cycle, human activity, and the climate system: a research portfolio. Current Opinion in Environmental Sustainability, 2010, 2, 301-311.	6.3	62

#	Article	IF	CITATIONS
181	The impacts of climate change on water resources and agriculture in China. Nature, 2010, 467, 43-51.	27.8	2,656
182	Update on CO2 emissions. Nature Geoscience, 2010, 3, 811-812.	12.9	561
183	The African contribution to the global climate-carbon cycle feedback of the 21st century. Biogeosciences, 2010, 7, 513-519.	3.3	8
184	Forest annual carbon cost: a globalâ€scale analysis of autotrophic respiration. Ecology, 2010, 91, 652-661.	3.2	171
185	Persistence of climate changes due to a range of greenhouse gases. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18354-18359.	7.1	144
186	Terrestrial nitrogen feedbacks may accelerate future climate change. Geophysical Research Letters, 2010, 37, .	4.0	230
187	Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review. Reviews of Geophysics, 2010, 48, .	23.0	199
188	Carbon and nitrogen cycle dynamics in the O N land surface model: 2. Role of the nitrogen cycle in the historical terrestrial carbon balance. Global Biogeochemical Cycles, 2010, 24, .	4.9	235
189	Benchmarking coupled climateâ€carbon models against longâ€term atmospheric CO ₂ measurements. Global Biogeochemical Cycles, 2010, 24, .	4.9	97
190	Variability and recent trends in the African terrestrial carbon balance. Biogeosciences, 2009, 6, 1935-1948.	3.3	60
191	The indirect global warming potential and global temperature change potential due to methane oxidation. Environmental Research Letters, 2009, 4, 044007.	5.2	199
192	Quantifying Carbon Cycle Feedbacks. Journal of Climate, 2009, 22, 5232-5250.	3.2	225
193	Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2009, 2, 831-836.	12.9	1,746
194	Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochemical Cycles, 2009, 23, .	4.9	180
195	Footprint of temperature changes in the temperate and boreal forest carbon balance. Geophysical Research Letters, 2009, 36, .	4.0	38
196	A revised estimate of the processes contributing to global warming due to climate-carbon feedback. Geophysical Research Letters, 2009, 36, .	4.0	14
197	On the formation of highâ€latitude soil carbon stocks: Effects of cryoturbation and insulation by organic matter in a land surface model. Geophysical Research Letters, 2009, 36, .	4.0	132
198	Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1704-1709.	7.1	2,294

#	Article	IF	CITATIONS
199	Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 2008, 451, 49-52.	27.8	930
200	A steep road to climate stabilization. Nature, 2008, 451, 297-298.	27.8	35
201	Evaluation of the terrestrial carbon cycle, future plant geography and climateâ€carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 2008, 14, 2015-2039.	9.5	1,097
202	A Review of Uncertainties in Global Temperature Projections over the Twenty-First Century. Journal of Climate, 2008, 21, 2651-2663.	3.2	209
203	Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models. Biogeosciences, 2008, 5, 597-614.	3.3	104
204	Changes in climate and land use have a larger direct impact than rising CO ₂ on global river runoff trends. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15242-15247.	7.1	504
205	ENVIRONMENT: Tropical Forests and Climate Policy. Science, 2007, 316, 985-986.	12.6	386
206	What determines the magnitude of carbon cycle-climate feedbacks?. Global Biogeochemical Cycles, 2007, 21, n/a-n/a.	4.9	54
207	Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Global Biogeochemical Cycles, 2007, 21, .	4.9	598
208	A strategy for climate change stabilization experiments. Eos, 2007, 88, 217-221.	0.1	111
209	Impact of land cover change on surface climate: Relevance of the radiative forcing concept. Geophysical Research Letters, 2007, 34, .	4.0	148
210	Changement climatique et cycle du carbone. La Météorologie, 2007, 8, 21.	0.5	1
211	Effect of climate and CO2changes on the greening of the Northern Hemisphere over the past two decades. Geophysical Research Letters, 2006, 33, .	4.0	207
212	Simulation du climat récent et futur par les modèles du CNRM et de l'IPSL. La Météorologie, 2006, 8, 45.	0.5	13
213	The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dynamics, 2006, 27, 787-813.	3.8	795
214	Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. Journal of Climate, 2006, 19, 3337-3353.	3.2	2,647
215	How uncertainties in future climate change predictions translate into future terrestrial carbon fluxes. Global Change Biology, 2005, 11, 959-970.	9.5	67
216	Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Global Change Biology, 2005, 11, 2211-2233.	9.5	246

#	Article	IF	CITATIONS
217	Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437, 529-533.	27.8	3,245
218	Contributions of past and present human generations to committed warming caused by carbon dioxide. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10832-10836.	7.1	50
219	A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles, 2005, 19, .	4.9	1,755
220	Multiple constraints on regional CO2flux variations over land and oceans. Global Biogeochemical Cycles, 2005, 19, .	4.9	154
221	A model of the Earth's Dole effect. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	79
222	How positive is the feedback between climate change and the carbon cycle?. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 692-700.	1.6	256
223	Climatic Control of the High-Latitude Vegetation Greening Trend and Pinatubo Effect. Science, 2002, 296, 1687-1689.	12.6	672
224	Clobal response of the terrestrial biosphere to CO2and climate change using a coupled climate-carbon cycle model. Global Biogeochemical Cycles, 2002, 16, 31-1-31-15.	4.9	36
225	On the magnitude of positive feedback between future climate change and the carbon cycle. Geophysical Research Letters, 2002, 29, 43-1-43-4.	4.0	178
226	Positive feedback between future climate change and the carbon cycle. Geophysical Research Letters, 2001, 28, 1543-1546.	4.0	287
227	Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 2001, 414, 169-172.	27.8	1,162
228	Integrating Global Models of Terrestrial Primary Productivity. , 2001, , 449-478.		12
229	A global prognostic scheme of leaf onset using satellite data. Global Change Biology, 2000, 6, 709-725.	9.5	251
230	BELOWGROUND CONSEQUENCES OF VEGETATION CHANGE AND THEIR TREATMENT IN MODELS. , 2000, 10, 470-483.		295
231	Regional Changes in Carbon Dioxide Fluxes of Land and Oceans Since 1980. Science, 2000, 290, 1342-1346.	12.6	680
232	Three-dimensional transport and concentration of SF6. A model intercomparison study (TransCom 2). Tellus, Series B: Chemical and Physical Meteorology, 1999, 51, 266-297.	1.6	101
233	KEYNOTE PERSPECTIVE. Can a strong atmospheric CO2 rectifier effect be reconciled with a "reasonable" carbon budget?. Tellus, Series B: Chemical and Physical Meteorology, 1999, 51, 249-253.	1.6	41
234	Toward an allocation scheme for global terrestrial carbon models. Global Change Biology, 1999, 5, 755-770.	9.5	307

#	Article	IF	CITATIONS
235	A global calculation of the \hat{l} 13C of soil respired carbon: Implications for the biospheric uptake of anthropogenic CO2. Global Biogeochemical Cycles, 1999, 13, 519-530.	4.9	44
236	The seasonal cycle of atmospheric CO2: A study based on the NCAR Community Climate Model (CCM2). Journal of Geophysical Research, 1996, 101, 15079-15097.	3.3	36
237	Carbon-biosphere-climate interactions in the last glacial maximum climate. Journal of Geophysical Research, 1995, 100, 7203-7221.	3.3	40
238	On the contribution of CO2fertilization to the missing biospheric sink. Global Biogeochemical Cycles, 1995, 9, 541-556.	4.9	191
239	The impact of high altitude aircraft on the ozone layer in the stratosphere. Journal of Atmospheric Chemistry, 1994, 18, 103-128.	3.2	23
240	Sensitivity of the terrestrial biosphere to climatic changes: Impact on the carbon cycle. Environmental Pollution, 1994, 83, 143-147.	7.5	10
241	The climate induced variation of the continental biosphere: A model simulation of the Last Glacial Maximum. Geophysical Research Letters, 1992, 19, 897-900.	4.0	93
242	The Earth system feedbacks that matter for contemporary climate. , 0, , 102-128.		3