
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8764819/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Ant colony optimization. IEEE Computational Intelligence Magazine, 2006, 1, 28-39.	3.2	3,284
2	Swarm robotics: a review from the swarm engineering perspective. Swarm Intelligence, 2013, 7, 1-41.	2.2	1,207
3	The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 2016, 3, 43-58.	2.1	918
4	Ant Colony Optimization. IEEE Computational Intelligence Magazine, 2006, 1, 28-39.	3.2	906
5	ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 2012, 6, 271-295.	2.2	399
6	Frankenstein's PSO: A Composite Particle Swarm Optimization Algorithm. IEEE Transactions on Evolutionary Computation, 2009, 13, 1120-1132.	10.0	297
7	Swarmanoid: A Novel Concept for the Study of Heterogeneous Robotic Swarms. IEEE Robotics and Automation Magazine, 2013, 20, 60-71.	2.0	254
8	Lazy learning for local modelling and control design. International Journal of Control, 1999, 72, 643-658.	1.9	226
9	F-Race and Iterated F-Race: An Overview. , 2010, , 311-336.		207
10	Model-Based Search for Combinatorial Optimization: A Critical Survey. Annals of Operations Research, 2004, 131, 373-395.	4.1	193
11	Tuning Metaheuristics. Studies in Computational Intelligence, 2009, , .	0.9	143
12	AutoMoDe: A novel approach to the automatic design of control software for robot swarms. Swarm Intelligence, 2014, 8, 89-112.	2.2	122
13	Swarm robotics. Scholarpedia Journal, 2014, 9, 1463.	0.3	115
14	Improvement Strategies for the F-Race Algorithm: Sampling Design and Iterative Refinement. , 2007, , 108-122.		114
15	Swarm intelligence. Scholarpedia Journal, 2007, 2, 1462.	0.3	112
16	An effective hybrid algorithm for university course timetabling. Journal of Scheduling, 2006, 9, 403-432.	1.9	110
17	Hybrid Metaheuristics for the Vehicle Routing Problem with Stochastic Demands. Mathematical Modelling and Algorithms, 2006, 5, 91-110.	0.5	103
18	Majority-rule opinion dynamics with differential latency: a mechanism for self-organized collective decision-making. Swarm Intelligence, 2011, 5, 305-327.	2.2	89

#	Article	IF	CITATIONS
19	Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Autonomous Agents and Multi-Agent Systems, 2014, 28, 101-125.	2.1	82
20	On the Invariance of Ant Colony Optimization. IEEE Transactions on Evolutionary Computation, 2007, 11, 732-742.	10.0	77
21	Fault detection in autonomous robots based on fault injection andÂlearning. Autonomous Robots, 2008, 24, 49-67.	4.8	77
22	A Comparison of the Performance of Different Metaheuristics on the Timetabling Problem. Lecture Notes in Computer Science, 2003, , 329-351.	1.3	71
23	The local paradigm for modeling and control: from neuro-fuzzy to lazy learning. Fuzzy Sets and Systems, 2001, 121, 59-72.	2.7	70
24	An analysis of communication policies for homogeneous multi-colony ACO algorithms. Information Sciences, 2010, 180, 2390-2404.	6.9	70
25	AutoMoDe-Chocolate: automatic design of control software for robot swarms. Swarm Intelligence, 2015, 9, 125-152.	2.2	69
26	Automatic Design of Robot Swarms: Achievements and Challenges. Frontiers in Robotics and AI, 2016, 3,	3.2	66
27	Parameter Adaptation in Ant Colony Optimization. , 2011, , 191-215.		64
28	Autonomous task sequencing in a robot swarm. Science Robotics, 2018, 3, .	17.6	59
29	Continuous optimization algorithms for tuning real and integer parameters of swarm intelligence algorithms. Swarm Intelligence, 2012, 6, 49-75.	2.2	56
30	A self-adaptive communication strategy for flocking in stationary and non-stationary environments. Natural Computing, 2014, 13, 225-245.	3.0	54
31	Estimation-based ant colony optimization and local search for the probabilistic traveling salesman problem. Swarm Intelligence, 2009, 3, 223-242.	2.2	53
32	Task partitioning in swarms of robots: an adaptive method for strategy selection. Swarm Intelligence, 2011, 5, 283-304.	2.2	49
33	Automatic Off-Line Design of Robot Swarms: A Manifesto. Frontiers in Robotics and Al, 2019, 6, 59.	3.2	49
34	Property-Driven Design for Robot Swarms. ACM Transactions on Autonomous and Adaptive Systems, 2015, 9, 1-28.	0.8	48
35	The Role of Learning Methods in the Dynamic Assessment of Power Components Loading Capability. IEEE Transactions on Industrial Electronics, 2005, 52, 280-290.	7.9	44
36	Estimation-Based Local Search for Stochastic Combinatorial Optimization Using Delta Evaluations: A Case Study on the Probabilistic Traveling Salesman Problem. INFORMS Journal on Computing, 2008, 20, 644-658.	1.7	37

#	Article	IF	CITATIONS
37	Toward the Formal Foundation of Ant Programming. Lecture Notes in Computer Science, 2002, , 188-201.	1.3	37
38	A critical analysis of parameter adaptation in ant colony optimization. Swarm Intelligence, 2012, 6, 23-48.	2.2	36
39	On the Design of Boolean Network Robots. Lecture Notes in Computer Science, 2011, , 43-52.	1.3	35
40	Analysing an Evolved Robotic Behaviour Using a Biological Model of Collegial Decision Making. Lecture Notes in Computer Science, 2012, , 381-390.	1.3	34
41	How to assess and report the performance of a stochastic algorithm on a benchmark problem: mean or best result on a number of runs?. Optimization Letters, 2007, 1, 309-311.	1.6	33
42	Estimation-based metaheuristics for the probabilistic traveling salesman problem. Computers and Operations Research, 2010, 37, 1939-1951.	4.0	32
43	On the use of Bio-PEPA for modelling and analysing collective behaviours in swarm robotics. Swarm Intelligence, 2013, 7, 201-228.	2.2	32
44	Autonomous task partitioning in robot foraging: an approach based on cost estimation. Adaptive Behavior, 2013, 21, 118-136.	1.9	32
45	Behavior Trees as a Control Architecture in the Automatic Modular Design of Robot Swarms. Lecture Notes in Computer Science, 2018, , 30-43.	1.3	31
46	Swarm SLAM: Challenges and Perspectives. Frontiers in Robotics and AI, 2021, 8, 618268.	3.2	31
47	Self-Organizing and Scalable Shape Formation for a Swarm of Pico Satellites. , 2008, , .		30
48	Negotiation of Goal Direction for Cooperative Transport. Lecture Notes in Computer Science, 2006, , 191-202.	1.3	29
49	Adaptive sample size and importance sampling in estimation-based local search for the probabilistic traveling salesman problem. European Journal of Operational Research, 2009, 199, 98-110.	5.7	29
50	Simulation-only experiments to mimic the effects of the reality gap in the automatic design of robot swarms. Swarm Intelligence, 2020, 14, 1-24.	2.2	29
51	The TAM: abstracting complex tasks in swarm robotics research. Swarm Intelligence, 2015, 9, 1-22.	2.2	28
52	Metaheuristics for the Vehicle Routing Problem with Stochastic Demands. Lecture Notes in Computer Science, 2004, , 450-460.	1.3	27
53	Flocking in Stationary and Non-stationary Environments: A Novel Communication Strategy for Heading Alignment. , 2010, , 331-340.		26
54	Dynamical regimes and learning properties of evolved Boolean networks. Neurocomputing, 2013, 99, 111-123.	5.9	25

#	Article	IF	CITATIONS
55	Random Walk Exploration for Swarm Mapping. Lecture Notes in Computer Science, 2019, , 211-222.	1.3	25
56	Disentangling automatic and semi-automatic approaches to the optimization-based design of control software for robot swarms. Nature Machine Intelligence, 2020, 2, 494-499.	16.0	24
57	Towards a theory of practice inÂmetaheuristics design: A machine learning perspective. RAIRO - Theoretical Informatics and Applications, 2006, 40, 353-369.	0.5	23
58	Estimation-based metaheuristics for the single vehicle routing problem with stochastic demands and customers. Computational Optimization and Applications, 2015, 61, 463-487.	1.6	23
59	Task Partitioning in a Robot Swarm: Object Retrieval as a Sequence of Subtasks with Direct Object Transfer. Artificial Life, 2014, 20, 291-317.	1.3	22
60	Augmented reality for robots: Virtual sensing technology applied to a swarm of e-pucks. , 2015, , .		21
61	Recursive lazy learning for modeling and control. Lecture Notes in Computer Science, 1998, , 292-303.	1.3	20
62	Empirical assessment and comparison of neuro-evolutionary methods for the automatic off-line design of robot swarms. Nature Communications, 2021, 12, 4345.	12.8	20
63	Towards a Formal Verification Methodology for Collective Robotic Systems. Lecture Notes in Computer Science, 2012, , 54-70.	1.3	20
64	Socially-Mediated Negotiation for Obstacle Avoidance in Collective Transport. Springer Tracts in Advanced Robotics, 2013, , 571-583.	0.4	18
65	Automatic Design of Communication-Based Behaviors for Robot Swarms. Lecture Notes in Computer Science, 2018, , 16-29.	1.3	18
66	A Comparison of Particle Swarm Optimization Algorithms Based on Run-Length Distributions. Lecture Notes in Computer Science, 2006, , 1-12.	1.3	18
67	Costs and benefits of behavioral specialization. Robotics and Autonomous Systems, 2012, 60, 1408-1420.	5.1	17
68	Task Partitioning in Swarms of Robots: Reducing Performance Losses Due to Interference at Shared Resources. Lecture Notes in Electrical Engineering, 2011, , 217-228.	0.4	17
69	Data-driven techniques for direct adaptive control: the lazy and the fuzzy approaches. Fuzzy Sets and Systems, 2002, 128, 3-14.	2.7	16
70	Task partitioning in a robot swarm: a study on the effect of communication. Swarm Intelligence, 2013, 7, 173-199.	2.2	16
71	Reactive Stochastic Local Search Algorithms for the Genomic Median Problem. Lecture Notes in Computer Science, 2008, , 266-276.	1.3	16
72	Updating ACO Pheromones Using Stochastic Gradient Ascent and Cross-Entropy Methods. Lecture Notes in Computer Science, 2002, , 21-30.	1.3	15

MAURO BIRATTARI

#	Article	IF	CITATIONS
73	The ACO/F-Race Algorithm for Combinatorial Optimization Under Uncertainty. , 2007, , 189-203.		14
74	Phormica: Photochromic Pheromone Release and Detection System for Stigmergic Coordination in Robot Swarms. Frontiers in Robotics and AI, 2020, 7, 591402.	3.2	14
75	An analysis of post-selection in automatic configuration. , 2013, , .		13
76	Analysis of long-term swarm performance based on short-term experiments. Soft Computing, 2016, 20, 37-48.	3.6	13
77	Automatic Design of Collective Behaviors for Robots that Can Display and Perceive Colors. Applied Sciences (Switzerland), 2020, 10, 4654.	2.5	13
78	Multi-armed Bandit Formulation of the Task Partitioning Problem in Swarm Robotics. Lecture Notes in Computer Science, 2012, , 109-120.	1.3	13
79	A Critique of the Constitutive Role of Truthlikeness in the Similarity Approach. Erkenntnis, 2010, 72, 379-386.	0.9	12
80	Concurrent design of control software and configuration of hardware for robot swarms under economic constraints. PeerJ Computer Science, 2019, 5, e221.	4.5	12
81	Automatic modular design of robot swarms using behavior trees as a control architecture. PeerJ Computer Science, 2020, 6, e314.	4.5	12
82	"Can ants inspire robots?" Self-organized decision making in robotic swarms. , 2012, , .		11
83	Modular automatic design of collective behaviors for robots endowed with local communication capabilities. PeerJ Computer Science, 2020, 6, e291.	4.5	11
84	Observing the Effects of Overdesign in the Automatic Design of Control Software for Robot Swarms. Lecture Notes in Computer Science, 2016, , 149-160.	1.3	10
85	On Mimicking the Effects of the Reality Gap with Simulation-Only Experiments. Lecture Notes in Computer Science, 2018, , 109-122.	1.3	10
86	AutoMoDe: A Modular Approach to the Automatic Off-Line Design and Fine-Tuning of Control Software for Robot Swarms. Natural Computing Series, 2021, , 73-90.	2.2	10
87	Majority Rule with Differential Latency: An Absorbing Markov Chain to Model Consensus. Springer Proceedings in Complexity, 2013, , 651-658.	0.3	10
88	Automatic Synthesis of Fault Detection Modules for Mobile Robots. , 2007, , .		9
89	An analysis of parameter adaptation in reactive tabu search. International Transactions in Operational Research, 2014, 21, 127-152.	2.7	9
90	Designing control software for robot swarms. , 2018, , .		9

6

#	Article	IF	CITATIONS
91	Self-organized Task Partitioning in a Swarm of Robots. Lecture Notes in Computer Science, 2010, , 287-298.	1.3	9
92	A multi-objective ant colony optimization method applied to switch engine scheduling in railroad yards. Pesquisa Operacional, 2010, 30, 486-514.	0.4	8
93	A Swarm Robotics Approach to Task Allocation under Soft Deadlines and Negligible Switching Costs. Lecture Notes in Computer Science, 2014, , 270-279.	1.3	8
94	Off-line vs. On-line Tuning: A Study on \$mathcal{MAXMIN}\$ Ant System for the TSP. Lecture Notes in Computer Science, 2010, , 239-250.	1.3	8
95	Analysing Robot Swarm Decision-Making with Bio-PEPA. Lecture Notes in Computer Science, 2012, , 25-36.	1.3	8
96	Lazy Learning: A Logical Method for Supervised Learning. Studies in Fuzziness and Soft Computing, 2002, , 97-136.	0.8	7
97	Implementation Effort and Performance. Lecture Notes in Computer Science, 2007, , 31-45.	1.3	7
98	Off-line and On-line Tuning: A Study on Operator Selection for a Memetic Algorithm Applied to the QAP. Lecture Notes in Computer Science, 2011, , 203-214.	1,3	7
99	Incremental Local Search in Ant Colony Optimization: Why It Fails for the Quadratic Assignment Problem. Lecture Notes in Computer Science, 2006, , 156-166.	1.3	6
100	Evaluation of Alternative Exploration Schemes in the Automatic Modular Design of Robot Swarms. Communications in Computer and Information Science, 2020, , 18-33.	0.5	6
101	Probabilistic Analysis of Long-Term Swarm Performance under Spatial Interferences. Lecture Notes in Computer Science, 2013, , 121-132.	1.3	6
102	AutoMoDe-Arlequin: Neural Networks as Behavioral Modules for the Automatic Design of Probabilistic Finite-State Machines. Lecture Notes in Computer Science, 2020, , 271-281.	1,3	6
103	AutoMoDe-Cedrata: Automatic Design of Behavior Trees for Controlling a Swarm of Robots with Communication Capabilities. SN Computer Science, 2022, 3, 1.	3.6	6
104	Modern Continuous Optimization Algorithms for Tuning Real and Integer Algorithm Parameters. Lecture Notes in Computer Science, 2010, , 203-214.	1.3	5
105	Dynamical Properties of Artificially Evolved Boolean Network Robots. Lecture Notes in Computer Science, 2015, , 45-57.	1.3	5
106	Iterative improvement in the automatic modular design of robot swarms. PeerJ Computer Science, 2020, 6, e322.	4.5	5
107	Opinion Dynamics for Decentralized Decision-Making in a Robot Swarm. Lecture Notes in Computer Science, 2010, , 251-262.	1.3	5
108	AutoMoDe-Mate: Automatic off-line design of spatially-organizing behaviors for robot swarms. Swarm and Evolutionary Computation, 2022, 74, 101118.	8.1	5

#	Article	IF	CITATIONS
109	Adaptive memory based regression methods. , 0, , .		4
110	The Metaphysical Character of the Criticisms Raised Against the Use of Probability for Dealing with Uncertainty in Artificial Intelligence. Minds and Machines, 2008, 18, 273-288.	4.8	4
111	On the sensitivity of reactive tabu search to its meta-parameters. Soft Computing, 2014, 18, 2177-2190.	3.6	4
112	Automatic Modular Design of Behavior Trees for Robot Swarms with Communication Capabilites. Lecture Notes in Computer Science, 2021, , 130-145.	1.3	4
113	Towards an integrated automatic design process for robot swarms. Open Research Europe, 0, 1, 112.	2.0	4
114	On the Invariance of Ant System. Lecture Notes in Computer Science, 2006, , 215-223.	1.3	4
115	MADS/F-Race: Mesh Adaptive Direct Search Meets F-Race. Lecture Notes in Computer Science, 2010, , 41-50.	1.3	4
116	Temporal Task Allocation in Periodic Environments. Lecture Notes in Computer Science, 2014, , 182-193.	1.3	4
117	Incremental Social Learning Applied to a Decentralized Decision-Making Mechanism: Collective Learning Made Faster. , 2010, , .		3
118	Complexity Measures: Open Questions and Novel Opportunities in the Automatic Design and Analysis of Robot Swarms. Frontiers in Robotics and Al, 2019, 6, 130.	3.2	3
119	Costs and Benefits of Behavioral Specialization. Lecture Notes in Computer Science, 2011, , 90-101.	1.3	3
120	Boolean Network Robotics as an Intermediate Step in the Synthesis of Finite State Machines for Robot Control. , 0, , .		3
121	Exogenous Fault Detection in a Collective Robotic Task. , 2007, , 555-564.		3
122	ANTS 2010 special issue. Swarm Intelligence, 2011, 5, 143-147.	2.2	2
123	Invention Versus Discovery. , 2013, , 1139-1146.		2
124	Enhancing the Cooperative Transport of Multiple Objects. Lecture Notes in Computer Science, 2008, , 307-314.	1.3	2
125	Identification of Dynamical Structures in Artificial Brains: An Analysis of Boolean Network Controlled Robots. Lecture Notes in Computer Science, 2013, , 324-335.	1.3	2
126	AutoMoDe-IcePop: Automatic Modular Design of Control Software for Robot Swarms Using Simulated Annealing. Communications in Computer and Information Science, 2020, , 3-17.	0.5	2

#	Article	IF	CITATIONS
127	Combining Lazy Learning, Racing and Subsampling for Effective Feature Selection. , 2005, , 393-396.		1
128	Engineering self-coordinating software intensive systems. , 2010, , .		1
129	ANTS 2014 special issue: Editorial. Swarm Intelligence, 2015, 9, 71-73.	2.2	1
130	Complexity Measures in Automatic Design of Robot Swarms: An Exploratory Study. Communications in Computer and Information Science, 2018, , 243-256.	0.5	1
131	Off-Policy Evaluation of the Performance of a Robot Swarm: Importance Sampling to Assess Potential Modifications to the Finite-State Machine That Controls the Robots. Frontiers in Robotics and Al, 2021, 8, 625125.	3.2	1
132	Out-of-the-Box and Custom Implementation of Metaheuristics. A Case Study: The Vehicle Routing Problem with Stochastic Demand. Studies in Computational Intelligence, 2011, , 273-295.	0.9	1
133	Local Learning for Nonlinear Control. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1998, 31, 351-356.	0.4	Ο
134	Data-Driven Techniques for Divide and Conquer Adaptive Control. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2000, 33, 59-64.	0.4	0
135	ANTS 2012 special issue. Swarm Intelligence, 2013, 7, 79-81.	2.2	0
136	ANTS 2016 special issue: Editorial. Swarm Intelligence, 2017, 11, 181-183.	2.2	0
137	ANTS 2018 special issue: Editorial. Swarm Intelligence, 2019, 13, 169-172.	2.2	Ο
138	ACO Applied to Switch Engine Scheduling in a Railroad Yard. Lecture Notes in Computer Science, 2006, , 502-503.	1.3	0
139	Background and State-of-the-Art. Studies in Computational Intelligence, 2009, , 11-67.	0.9	0
140	Experiments and Applications. Studies in Computational Intelligence, 2009, , 117-169.	0.9	0
141	Invention Versus Discovery. , 2020, , 1485-1492.		0