List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/876431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Planet Formation around Stars of Various Masses: The Snow Line and the Frequency of Giant Planets. Astrophysical Journal, 2008, 673, 502-512.	4.5	378
2	Planet Hunters IX. KICÂ8462852 – where's the flux?. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3988-4004.	4.4	222
3	TOWARD CHEMICAL CONSTRAINTS ON HOT JUPITER MIGRATION. Astrophysical Journal Letters, 2014, 794, L12.	8.3	209
4	Resolved debris discs around A stars in the Herschel DEBRIS survey. Monthly Notices of the Royal Astronomical Society, 2013, 428, 1263-1280.	4.4	144
5	YOUNG "DIPPER―STARS IN UPPER SCO AND OPH OBSERVED BY K2. Astrophysical Journal, 2016, 816, 69.	4.5	124
6	Circumbinary, not transitional: on the spiral arms, cavity, shadows, fast radial flows, streamers, and horseshoe in the HD 142527 disc. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1270-1284.	4.4	122
7	Exocometary gas in the HD 181327 debris ring. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2933-2944.	4.4	113
8	Herschel imaging of 61 Vir: implications for the prevalence of debris in low-mass planetary systems. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1206-1223.	4.4	110
9	Detection of Exocometary CO within the 440 Myr Old Fomalhaut Belt: A Similar CO+CO ₂ Ice Abundance in Exocomets and Solar System Comets. Astrophysical Journal, 2017, 842, 9.	4.5	109
10	RESOLVED IMAGING OF THE HRÂ8799 DEBRIS DISK WITH HERSCHEL *. Astrophysical Journal, 2014, 780, 97.	4.5	107
11	An unbiased study of debris discs around A-type stars with Herschel. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2558-2573.	4.4	106
12	Do two-temperature debris discs have multiple belts?. Monthly Notices of the Royal Astronomical Society, 2014, 444, 3164-3182.	4.4	106
13	SONS: The JCMT legacy survey of debris discs in the submillimetre. Monthly Notices of the Royal Astronomical Society, 2017, 470, 3606-3663.	4.4	106
14	99 Herculis: host to a circumbinary polar-ring debris disc. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2264-2276.	4.4	102
15	Predictions for the secondary CO, C and O gas content of debris discs from the destruction of volatile-rich planetesimals. Monthly Notices of the Royal Astronomical Society, 2017, 469, 521-550.	4.4	101
16	ALMA observations of the Î∙ Corvi debris disc: inward scattering of CO-rich exocomets by a chain of 3–30ÂM _⊕ planets?. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2595-2615.	4.4	96
17	STELLAR MASS DEPENDENT DISK DISPERSAL. Astrophysical Journal, 2009, 695, 1210-1226.	4.5	89
18	A Complete ALMA Map of the Fomalhaut Debris Disk. Astrophysical Journal, 2017, 842, 8.	4.5	89

#	Article	IF	CITATIONS
19	MILLIMETER EMISSION STRUCTURE IN THE FIRST ALMA IMAGE OF THE AU Mic DEBRIS DISK. Astrophysical Journal Letters, 2013, 762, L21.	8.3	84
20	Analysis of the Herschel DEBRIS Sun-like star sample. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3046-3064.	4.4	83
21	Resolving debris discs in the far-infrared: Early highlights from the DEBRIS survey. Astronomy and Astrophysics, 2010, 518, L135.	5.1	81
22	DOES THE PRESENCE OF PLANETS AFFECT THE FREQUENCY AND PROPERTIES OF EXTRASOLAR KUIPER BELTS? RESULTS FROM THE <i>HERSCHEL</i> DEBRIS AND DUNES SURVEYS. Astrophysical Journal, 2015, 801, 143.	4.5	80
23	The bright end of the exo-Zodi luminosity function: disc evolution and implications for exo-Earth detectability. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2334-2356.	4.4	78
24	The HOSTS Survey—Exozodiacal Dust Measurements for 30 Stars. Astronomical Journal, 2018, 155, 194.	4.7	78
25	Five steps in the evolution from protoplanetary to debris disk. Astrophysics and Space Science, 2015, 357, 1.	1.4	75
26	First results of the SONS survey: submillimetre detections of debris discs. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1037-1046.	4.4	73
27	A remnant planetary core in the hot-Neptune desert. Nature, 2020, 583, 39-42.	27.8	73
28	NULLING DATA REDUCTION AND ON-SKY PERFORMANCE OF THE LARGE BINOCULAR TELESCOPE INTERFEROMETER. Astrophysical Journal, 2016, 824, 66.	4.5	70
29	Alignment in star–debris disc systems seen by <i>Herschel</i> . Monthly Notices of the Royal Astronomical Society: Letters, 2013, 438, L31-L35.	3.3	69
30	The <i>Gaia</i> -ESO Survey: revisiting the Li-rich giant problem. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3336-3352.	4.4	69
31	Discovery of a low-mass companion inside the debris ring surrounding the F5V star HD 206893. Astronomy and Astrophysics, 2017, 597, L2.	5.1	69
32	Planet Formation around Low-Mass Stars: The Moving Snow Line and Super-Earths. Astrophysical Journal, 2006, 650, L139-L142.	4.5	68
33	The Northern arc of ε Eridani's Debris Ring as seen by ALMA. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3200-3212.	4.4	68
34	An Empirical Planetesimal Belt Radius–Stellar Luminosity Relation. Astrophysical Journal, 2018, 859, 72.	4.5	66
35	A DEBRIS disk around the planet hosting M-star GJÂ581 spatially resolved with <i>Herschel</i> . Astronomy and Astrophysics, 2012, 548, A86.	5.1	65
36	Collisional evolution of irregular satellite swarms: detectable dust around Solar system and extrasolar planets. Monthly Notices of the Royal Astronomical Society, 2011, 412, 2137-2153.	4.4	64

#	Article	IF	CITATIONS
37	Coplanar circumbinary debris discs. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2115-2128.	4.4	63
38	Spatially resolved images of dust belt(s) around the planet-hosting subgiant CrB. Monthly Notices of the Royal Astronomical Society, 2013, 431, 3025-3035.	4.4	62
39	Stellar multiplicity and debris discs: an unbiased sample. Monthly Notices of the Royal Astronomical Society, 2015, 449, 3160-3170.	4.4	60
40	Dipper discs not inclined towards edge-on orbits. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 462, L101-L105.	3.3	60
41	A circumbinary protoplanetary disk in a polar configuration. Nature Astronomy, 2019, 3, 230-235.	10.1	59
42	THE AU MIC DEBRIS DISK: FAR-INFRARED AND SUBMILLIMETER RESOLVED IMAGING. Astrophysical Journal, 2015, 811, 100.	4.5	57
43	The HOSTS Survey for Exozodiacal Dust: Observational Results from the Complete Survey. Astronomical Journal, 2020, 159, 177.	4.7	57
44	Kuiper Belt–like Hot and Cold Populations of Planetesimal Inclinations in the β Pictoris Belt Revealed by ALMA. Astronomical Journal, 2019, 157, 135.	4.7	56
45	A gap in the planetesimal disc around HD 107146 and asymmetric warm dust emission revealed by ALMA. Monthly Notices of the Royal Astronomical Society, 2018, 479, 5423-5439.	4.4	54
46	Are debris discs self-stirred?. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	52
47	Planet Formation around Stars of Various Masses: Hot Superâ€Earths. Astrophysical Journal, 2008, 682, 1264-1276.	4.5	51
48	Correlations between the stellar, planetary, and debris components of exoplanet systems observed by <i>Herschel</i> . Astronomy and Astrophysics, 2014, 565, A15.	5.1	50
49	Confusion limited surveys: using <i>WISE</i> to quantify the rarity of warm dust around <i>Kepler</i> stars. Monthly Notices of the Royal Astronomical Society, 2012, 426, 91-107.	4.4	48
50	Modelling the KIC8462852 light curves: compatibility of the dips and secular dimming with an exocomet interpretation. Monthly Notices of the Royal Astronomical Society, 2018, 473, 5286-5307.	4.4	48
51	ALMA OBSERVATIONS OF THE DEBRIS DISK OF SOLAR ANALOG Ï,, CETI. Astrophysical Journal, 2016, 828, 113.	4.5	47
52	ALMA observations of the multiplanet system 61 Vir: what lies outside super-Earth systems?. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3518-3531.	4.4	46
53	Discovery of new dipper stars with K2: a window into the inner disc region of T Tauri stars. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2968-2998.	4.4	44
54	Herschel observations of debris discs orbiting planet-hosting subgiants. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3288-3297.	4.4	43

#	Article	IF	CITATIONS
55	FIRST-LIGHT LBT NULLING INTERFEROMETRIC OBSERVATIONS: WARM EXOZODIACAL DUST RESOLVED WITHIN A FEW AU OF η Crv. Astrophysical Journal, 2015, 799, 42.	4.5	42
56	Are inner disc misalignments common? ALMA reveals an isotropic outer disc inclination distribution for young dipper stars. Monthly Notices of the Royal Astronomical Society, 2020, 492, 572-588.	4.4	41
57	Periodic eclipses of the young star PDS 110 discovered with WASP and KELT photometry. Monthly Notices of the Royal Astronomical Society, 2017, 471, 740-749.	4.4	40
58	The First Post-Kepler Brightness Dips of KIC 8462852. Astrophysical Journal Letters, 2018, 853, L8.	8.3	38
59	ALMA observations of the narrow HR 4796A debris ring. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4924-4938.	4.4	38
60	Transiting exocomets detected in broadband light by TESS in the <i>β</i> Pictoris system. Astronomy and Astrophysics, 2019, 625, L13.	5.1	38
61	A gap in HD 92945's broad planetesimal disc revealed by ALMA. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1257-1269.	4.4	38
62	The SHARDDS survey: First resolved image of the HD 114082 debris disk in the Lower Centaurus Crux with SPHERE. Astronomy and Astrophysics, 2016, 596, L4.	5.1	36
63	First Scattered-light Images of the Gas-rich Debris Disk around 49 Ceti. Astrophysical Journal Letters, 2017, 834, L12.	8.3	36
64	Shaping HR8799's outer dust belt with an unseen planet. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4953-4966.	4.4	36
65	Multiwavelength modelling of the β Leo debris disc: one, two or three planetesimal populations?â~ Monthly Notices of the Royal Astronomical Society, 2011, 417, 1715-1734.	4.4	34
66	Imaged substellar companions: not as eccentric as they appear? The effect of an unseen inner mass on derived orbits. Monthly Notices of the Royal Astronomical Society, 2014, 437, 2686-2701.	4.4	33
67	Spectral and orbital characterisation of the directly imaged giant planet HIP 65426 b. Astronomy and Astrophysics, 2019, 622, A80.	5.1	33
68	Detection of a giant flare displaying quasi-periodic pulsations from a pre-main-sequence M star by the Next Generation Transit Survey. Monthly Notices of the Royal Astronomical Society, 2019, 482, 5553-5566.	4.4	33
69	SPATIALLY RESOLVED IMAGING OF THE TWO-COMPONENT η Crv DEBRIS DISK WITH <i>HERSCHEL</i> . Astrophysical Journal, 2014, 784, 148.	4.5	32
70	Warm exo-Zodi from cool exo-Kuiper belts: the significance of P–R drag and the inference of intervening planets. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2304-2311.	4.4	32
71	POLARIZATION MEASUREMENTS OF HOT DUST STARS AND THE LOCAL INTERSTELLAR MEDIUM. Astrophysical Journal, 2016, 825, 124.	4.5	32
72	Constraining the orbits of sub-stellar companions imaged over short orbital arcs. Monthly Notices of the Royal Astronomical Society, 2015, 448, 3679-3688.	4.4	31

#	Article	IF	CITATIONS
73	Early science with the Large Millimetre Telescope: Deep LMT/AzTEC millimetre observations of ϵ Eridani and its surroundings. Monthly Notices of the Royal Astronomical Society, 2016, 462, 2285-2294.	4.4	31
74	Insights into the planetary dynamics of HDÂ206893 with ALMA. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1319-1334.	4.4	31
75	A peculiar class of debris disks from <i>Herschel</i> /DUNES. Astronomy and Astrophysics, 2012, 541, A148.	5.1	30
76	A statistically significant lack of debris discs in medium separation binary systems. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3588-3606.	4.4	29
77	The debris disc of solar analogue Ceti: Herschel observations and dynamical simulations of the proposed multiplanet system. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2665-2675.	4.4	28
78	Kuiper belt structure around nearby super-Earth host stars. Monthly Notices of the Royal Astronomical Society, 2015, 449, 3121-3136.	4.4	28
79	The First Scattered-light Image of the Debris Disk around the Sco–Cen Target HD 129590. Astrophysical Journal Letters, 2017, 843, L12.	8.3	28
80	ISPY-NACO Imaging Survey for Planets around Young stars. Astronomy and Astrophysics, 2020, 635, A162.	5.1	28
81	EXO-ZODI MODELING FOR THE LARGE BINOCULAR TELESCOPE INTERFEROMETER. Astrophysical Journal, Supplement Series, 2015, 216, 23.	7.7	27
82	A â^¼75 per cent occurrence rate of debris discs around F stars in the βÂPic moving group. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5390-5416.	4.4	27
83	The transiting dust clumps in the evolved disc of the Sun-like UXor RZ Psc. Royal Society Open Science, 2017, 4, 160652.	2.4	25
84	Planet populations inferred from debris discs. Astronomy and Astrophysics, 2022, 659, A135.	5.1	25
85	Star–planet–debris disc alignment in the HD 82943 system: is planetary system coplanarity actually the norm?. Monthly Notices of the Royal Astronomical Society, 2013, 436, 898-903.	4.4	24
86	TARGET SELECTION FOR THE LBTI EXOZODI KEY SCIENCE PROGRAM. Astrophysical Journal, Supplement Series, 2015, 216, 24.	7.7	23
87	Extinction and the Dimming of KIC 8462852. Astrophysical Journal, 2017, 847, 131.	4.5	23
88	Extreme Debris Disk Variability: Exploring the Diverse Outcomes of Large Asteroid Impacts During the Era of Terrestrial Planet Formation. Astronomical Journal, 2019, 157, 202.	4.7	23
89	The unexpected narrowness of eccentric debris rings: a sign of eccentricity during the protoplanetary disc phase. Royal Society Open Science, 2020, 7, 200063.	2.4	21
90	Discovery of the Fomalhaut C debris disc. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 438, L96-L100.	3.3	20

#	Article	IF	CITATIONS
91	Survey of planetesimal belts with ALMA: gas detected around the Sun-like star HD 129590. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2811-2830.	4.4	20
92	Spin–Orbit Alignment of the β Pictoris Planetary System. Astrophysical Journal Letters, 2020, 897, L8.	8.3	19
93	Dust production in the debris disk around HR 4796 A. Astronomy and Astrophysics, 2019, 630, A142.	5.1	18
94	The wavelength dependence of interstellar polarization in the Local Hot Bubble. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3636-3646.	4.4	17
95	The little dippers: transits of star-grazing exocomets?. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3579-3591.	4.4	17
96	High-resolution ALMA and <i>HST</i> images of q1ÂEri: an asymmetric debris disc with an eccentric Jupiter. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1978-2001.	4.4	17
97	Unlocking the secrets of the midplane gas and dust distribution in the young hybrid disc HD 141569. Astronomy and Astrophysics, 2018, 615, L10.	5.1	17
98	Planet formation around M-dwarfs: theÂmovingÂsnowÂlineÂandÂsuper-Earths. Astrophysics and Space Science, 2007, 311, 9-13.	1.4	16
99	THE DEBRIS DISK AROUND Î ³ DORADUS RESOLVED WITH <i>HERSCHEL </i> . Astrophysical Journal, 2013, 762, 52.	4.5	16
100	Interpreting the extended emission around three nearby debris disc host stars. Astronomy and Astrophysics, 2014, 570, A114.	5.1	16
101	Evolution from protoplanetary to debris discs: the transition disc around HDÂ166191. Monthly Notices of the Royal Astronomical Society, 2014, 438, 3299-3309.	4.4	16
102	Empty gaps? Depleting annular regions in debris discs by secular resonance with a two-planet system. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2673-2691.	4.4	16
103	No significant correlation between radial velocity planet presence and debris disc properties. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1943-1957.	4.4	16
104	ALMA survey of Lupus class III stars: Early planetesimal belt formation and rapid disc dispersal. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4878-4900.	4.4	16
105	The REASONS Survey: Resolved Millimeter Observations of a Large Debris Disk around the Nearby F Star HD 170773. Astrophysical Journal, 2019, 881, 84.	4.5	15
106	IR excesses around nearby Lambda Boo stars are caused by debris discs rather than ISM bow waves. Monthly Notices of the Royal Astronomical Society, 2016, 456, 459-476.	4.4	13
107	Kuiper belt analogues in nearby M-type planet-host systems. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4584-4591.	4.4	13
108	Comprehensive Analysis of HD 105, A Young Solar System Analog. Astrophysical Journal, 2018, 869, 10.	4.5	13

#	Article	IF	CITATIONS
109	An automated search for transiting exocomets. Monthly Notices of the Royal Astronomical Society, 2019, 482, 5587-5596.	4.4	13
110	Using warm dust to constrain unseen planets. Monthly Notices of the Royal Astronomical Society, 2018, 480, 5560-5579.	4.4	12
111	Constraining planet formation around 6–8 M⊙ stars. Monthly Notices of the Royal Astronomical Society, 2020, 493, 765-775.	4.4	12
112	The HD 98800 quadruple pre-main sequence system. Astronomy and Astrophysics, 2021, 655, A15.	5.1	12
113	Constraining the presence of giant planets in two-belt debris disc systems with VLT/SPHERE direct imaging and dynamical arguments. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2757-2783.	4.4	11
114	Discovery of an Edge-on Circumstellar Debris Disk around BD+45° 598: A Newly Identified Member of the β Pictoris Moving Group. Astrophysical Journal, 2021, 912, 115.	4.5	11
115	Circumbinary Disk Evolution in the Presence of an Outer Companion Star. Astrophysical Journal Letters, 2022, 927, L26.	8.3	11
116	Making high-accuracy null depth measurements for the LBTI exozodi survey. Proceedings of SPIE, 2016, ,	0.8	10
117	ISPY – NaCo Imaging Survey for Planets around Young stars. Astronomy and Astrophysics, 2019, 627, A77.	5.1	10
118	A search for trends in spatially resolved debris discs at far-infrared wavelengths. Monthly Notices of the Royal Astronomical Society, 2021, 501, 6168-6180.	4.4	10
119	Searching for Saturn's dust swarm: limits on the size distribution of irregular satellites from km to micron sizes. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2281-2287.	4.4	9
120	Effects of disc asymmetries on astrometric measurements. Astronomy and Astrophysics, 2016, 592, A39.	5.1	9
121	The KIC 8462852 light curve from 2015.75 to 2018.18 shows a variable secular decline. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2235-2248.	4.4	9
122	A near-infrared interferometric survey of debris-disk stars. Astronomy and Astrophysics, 2021, 651, A45.	5.1	9
123	Planet formation in intermediate-separation binary systems. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4317-4328.	4.4	9
124	Hiding Signatures of Gravitational Instability in Protoplanetary Disks with Planets. Astrophysical Journal Letters, 2020, 904, L18.	8.3	9
125	Highly Structured Inner Planetary System Debris around the Intermediate Age Sun-like Star TYC 8830 410 1. Astrophysical Journal, 2021, 923, 90.	4.5	9
126	Nature or nurture of coplanar Tatooines: the aligned circumbinary Kuiper belt analogue around HD 131511. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 447, L75-L79.	3.3	8

#	Article	IF	CITATIONS
127	Mutual inclinations between giant planets and their debris discs in HDÂ113337 and HDÂ38529. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5059-5074.	4.4	8
128	Carbon monoxide gas produced by a giant impact in the inner region of a young system. Nature, 2021, 598, 425-428.	27.8	8
129	A Star-sized Impact-produced Dust Clump in the Terrestrial Zone of the HD 166191 System. Astrophysical Journal, 2022, 927, 135.	4.5	8
130	Exocomet orbit fitting: accelerating coma absorption during transits of Î ² Pictoris. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1997-2006.	4.4	7
131	A Gap in the Mass Distribution for Warm Neptune and Terrestrial Planets. Astrophysical Journal Letters, 2019, 880, L1.	8.3	7
132	The PDS 110 observing campaign – photometric and spectroscopic observations reveal eclipses are aperiodic. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1614-1625.	4.4	7
133	ISPY – NaCo Imaging Survey for Planets around Young stars. Astronomy and Astrophysics, 2019, 624, A29.	5.1	7
134	Infrared colours and inferred masses of metal-poor giant stars in the Kepler field. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2812-2818.	4.4	6
135	A low-mass stellar companion to the young variable star RZÂPsc. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 496, L75-L79.	3.3	6
136	The <i>\hat{I}^2</i> Pictoris b Hill sphere transit campaign. Astronomy and Astrophysics, 2021, 648, A15.	5.1	6
137	ALMA imaging of the M-dwarf Fomalhaut C's debris disc. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4497-4510.	4.4	6
138	Four new planetesimals around typical and pre-main-sequence  stars (PLATYPUS) debris discs at 8.8 mm. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3139-3147.	4.4	6
139	The HOSTS survey for exo-zodiacal dust: preliminary results and future prospects. , 2018, , .		6
140	Herschel Observations of Disks around Late-type Stars. Publications of the Astronomical Society of the Pacific, 2020, 132, 084401.	3.1	5
141	The HOSTS Survey: Evidence for an Extended Dust Disk and Constraints on the Presence of Giant Planets in the Habitable Zone of \hat{I}^2 Leo. Astronomical Journal, 2021, 161, 186.	4.7	5
142	The LBTI hunt for observable signatures of terrestrial systems (HOSTS) survey: a key NASA science program on the road to exoplanet imaging missions. Proceedings of SPIE, 2014, , .	0.8	4
143	An unusually large gaseous transit in a debris disc. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5218-5227.	4.4	4
144	Searching for a dusty cometary belt around TRAPPIST-1 with ALMA. Monthly Notices of the Royal Astronomical Society, 2020, 492, 6067-6073.	4.4	4

#	Article	IF	CITATIONS
145	A Herschel PACS survey of brown dwarfs in IC 2391: limits on primordial and debris disc fractions. Monthly Notices of the Royal Astronomical Society, 2014, 442, 3065-3072.	4.4	3
146	Enabling the direct detection of earth-sized exoplanets with the LBTI HOSTS project: a progress report. Proceedings of SPIE, 2016, , .	0.8	3
147	Publisher Note: Circumbinary, not transitional: On the spiral arms, cavity, shadows, fast radial flows, streamers and horseshoe in the HD142527 disc. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3169-3169.	4.4	3
148	Optical polarimetry of KIC 8462852 in 2017 May–August. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 473, L26-L30.	3.3	3
149	Rapid CO gas dispersal from NOÂLup's classÂIII circumstellar disc. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 502, L66-L71.	3.3	3
150	The formation of planetary systems with SPICA. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	3
151	High-resolution spectroscopy of Boyajian's star during optical dimming events. Monthly Notices of the Royal Astronomical Society, 2019, 486, 236-244.	4.4	2
152	LIStEN: <i>L</i> ′ band Imaging Survey for Exoplanets in the North. Astronomy and Astrophysics, 2021, 645, A88.	5.1	2
153	SpiKeS: Precision Warm Spitzer Photometry of the Kepler Field. Astrophysical Journal, Supplement Series, 2021, 254, 11.	7.7	2
154	ALMA's view of the M-dwarf GSC 07396-00759's edge-on debris disc: AU Mic's coeval twin. Notices of the Royal Astronomical Society, 2022, 512, 4752-4764.	Monthly 4.4	1
155	The bright end of the exo-Zodi luminosity function: Disk evolution and implications for exo-Earth detectability. Proceedings of the International Astronomical Union, 2013, 8, 194-198.	0.0	0
156	Locating the Dust in A Star Debris Discs. Proceedings of the International Astronomical Union, 2013, 8, 330-331.	0.0	0
157	The Population of Debris Discs Orbiting Subgiants. Proceedings of the International Astronomical Union, 2013, 8, 328-329.	0.0	0
158	Two-temperature Debris Disks: Signposts for Directly Imaged Planets?. Proceedings of the International Astronomical Union, 2015, 10, 163-166.	0.0	0
159	A-type Stellar Abundances: A Corollary to Herschel Observations of Debris Disks. Astrophysical Journal, 2018, 857, 93.	4.5	0