Joelma Perez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8764024/publications.pdf

Version: 2024-02-01

36 1,692 21 34 papers citations h-index g-index

36 36 2208
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	CO tolerance and stability of PtRu and PtRuMo electrocatalysts supported on N-doped graphene nanoplatelets for polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2020, 45, 5276-5284.	7.1	25
2	CO Tolerance and Stability of Graphene and N-Doped Graphene Supported Pt Anode Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells. Catalysts, 2020, 10, 597.	3.5	5
3	Spatially resolved oxygen reaction, water, and temperature distribution: Experimental results as a function of flow field and implications for polymer electrolyte fuel cell operation. Applied Energy, 2019, 252, 113421.	10.1	5
4	Synthesis, Characterization and CO Tolerance Evaluation in PEMFCs of Pt2RuMo Electrocatalysts. Catalysts, 2019, 9, 61.	3.5	18
5	Effect of MgO coverage on the synthesis and thermal treatment of Pt-Sn/C catalysts. Materials Letters, 2019, 244, 6-9.	2.6	O
6	Pt‧nâ€Eu/C Catalysts: Application of Rare Earth Metals as Anodes in Direct Ethanol Fuel Cells. Fuel Cells, 2018, 18, 73-81.	2.4	22
7	Activity, mechanism, and short-term stability evaluation of PtSn-rare earth/C electrocatalysts for the ethanol oxidation reaction. Journal of Solid State Electrochemistry, 2018, 22, 1525-1537.	2.5	9
8	Activity and Long-Term Stability Study of Pt-Y/C Electrocatalysts for Oxygen Reduction Reaction. ECS Transactions, 2016, 72, 23-34.	0.5	3
9	Ptâ€"rare earth catalysts for ethanol electrooxidation: modification of polyol synthesis. Journal of Solid State Electrochemistry, 2016, 20, 2581-2587.	2.5	12
10	Electro-oxidation of ethanol on ternary non-alloyed Ptâ€"Snâ€"Pr/C catalysts. Journal of Power Sources, 2015, 275, 377-383.	7.8	23
11	Electro-oxidation of ethanol on ternary Pt–Sn–Ce/C catalysts. Applied Catalysis B: Environmental, 2015, 165, 176-184.	20.2	43
12	PEDOT:PSS self-assembled films to methanol crossover reduction in Nafion \hat{A}^{\otimes} membranes. Applied Surface Science, 2014, 323, 7-12.	6.1	11
13	Activity, short-term stability (poisoning tolerance) and durability of carbon supported Pt–Pr catalysts for ethanol oxidation. Journal of Power Sources, 2014, 251, 402-410.	7.8	22
14	Effect of the degree of alloying of $PtRu/C$ (1:1) catalysts on ethanol oxidation. Ionics, 2013, 19, 1037-1045.	2.4	20
15	Structural and electrochemical characterization of carbon supported Pt–Pr catalysts for direct ethanol fuel cells prepared using a modified formic acid method in a CO atmosphere. Physical Chemistry Chemical Physics, 2013, 15, 11730.	2.8	24
16	Effect of the relationship between particle size, inter-particle distance, and metal loading of carbon supported fuel cell catalysts on their catalytic activity. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	28
17	The use of rare earth-based materials in low-temperature fuel cells. International Journal of Hydrogen Energy, 2011, 36, 15752-15765.	7.1	69
18	The renaissance of unsupported nanostructured catalysts for low-temperature fuel cells: from the size to the shape of metal nanostructures. Journal of Materials Science, 2011, 46, 4435-4457.	3.7	116

#	Article	IF	CITATIONS
19	Particle size effect for ethanol electro-oxidation on Pt/C catalysts in half-cell and in a single direct ethanol fuel cell. Journal of Electroanalytical Chemistry, 2011, 654, 108-115.	3.8	104
20	Surface structure and electronic properties of Pt–Fe/C nanocatalysts and their relation with catalytic activity for oxygen reduction. Journal of Power Sources, 2010, 195, 3111-3118.	7.8	42
21	Alloys and oxides on carbon-supported Pt–Sn electrocatalysts for ethanol oxidation. Journal of Power Sources, 2010, 195, 3394-3401.	7.8	90
22	Dependence on composition of electronic properties and stability of Pt–Fe/C catalysts for oxygen reduction. Journal of Power Sources, 2010, 195, 7255-7258.	7.8	22
23	The Extent on the Nanoscale of Pt-Skin Effects on Oxygen Reduction and Its Influence on Fuel Cell Power. Journal of Physical Chemistry C, 2010, 114, 20267-20271.	3.1	16
24	Well-Alloyed PtFeâ^•C Nanocatalysts of Controlled Composition and Same Particle Size: Oxygen Reduction and Methanol Tolerance. Journal of the Electrochemical Society, 2009, 156, B51.	2.9	39
25	Effects of Alloyed and Oxide Phases on Methanol Oxidation of Ptâ^Ru/C Nanocatalysts of the Same Particle Size. Journal of Physical Chemistry C, 2009, 113, 8518-8525.	3.1	56
26	The Aerosol OT + <i>n</i> -Butanol + <i>n</i> -Heptane + Water System:  Phase Behavior, Structure Characterization, and Application to Pt ₇₀ Fe ₃₀ Nanoparticle Synthesis. Langmuir, 2007, 23, 11015-11020.	3.5	39
27	Influence of Particle Size on the Properties of Pt–Ruâ̂•C Catalysts Prepared by a Microemulsion Method. Journal of the Electrochemical Society, 2007, 154, B474.	2.9	36
28	The Electro-oxidation of Ethanol on Pt-Ru and Pt-Mo Particles Supported on High-Surface-Area Carbon. Journal of the Electrochemical Society, 2002, 149, A272.	2.9	162
29	Surface and electrochemical investigations of a fullerene soot. Electrochimica Acta, 1999, 44, 3565-3574.	5.2	26
30	Oxygen electrocatalysis on thin porous coating rotating platinum electrodes. Electrochimica Acta, 1998, 44, 1329-1339.	5.2	278
31	Hydrogen Evolution Reaction on Gold Single-Crystal Electrodes in Acid Solutions. Journal of Physical Chemistry B, 1998, 102, 10931-10935.	2.6	113
32	Impedance Studies of the Oxygen Reduction on Thin Porous Coating Rotating Platinum Electrodes. Journal of the Electrochemical Society, 1998, 145, 2307-2313.	2.9	23
33	Preparação e caracterização de eletrodos monocristalinos. Quimica Nova, 1997, 20, 555-559.	0.3	0
34	Structure sensitivity of oxygen reduction on platinum single crystal electrodes in acid solutions. Journal of Electroanalytical Chemistry, 1997, 435, 179-187.	3.8	80
35	Electrochemical Properties of Iron Phthalocyanine Immobilized on Titanium(IV) Oxide Coated on Silica Gel Surface. Langmuir, 1995, 11, 1009-1013.	3.5	51
36	Application of the Floodedâ€Agglomerate Model to Study Oxygen Reduction on Thin Porous Coating Rotating Disk Electrode. Journal of the Electrochemical Society, 1994, 141, 431-436.	2.9	60