
Joshua Telser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8763911/publications.pdf Version: 2024-02-01

LOSHUA TELSED

#	Article	IF	CITATIONS
1	Ruthenium-nitrosyl complexes as NO-releasing molecules, potential anticancer drugs, and photoswitches based on linkage isomerism. Dalton Transactions, 2022, 51, 5367-5393.	3.3	35
2	Paramagnetic resonance investigation of mono- and di-manganese-containing systems in biochemistry. Methods in Enzymology, 2022, 666, 315-372.	1.0	0
3	Cooperative Activation of CO ₂ and Epoxide by a Heterobinuclear Al–Fe Complex via Radical Pair Mechanisms. Journal of the American Chemical Society, 2022, 144, 3210-3221.	13.7	36
4	The Ruthenium Nitrosyl Moiety in Clusters: Trinuclear Linear μ-Hydroxido Magnesium(II)-Diruthenium(II), μ ₃ -Oxido Trinuclear Diiron(III)–Ruthenium(II), and Tetranuclear μ ₄ -Oxido Trigallium(III)-Ruthenium(II) Complexes. Inorganic Chemistry, 2022, 61, 950-967.	4.0	7
5	Tale of Three Molecular Nitrides: Mononuclear Vanadium (V) and (IV) Nitrides As Well As a Mixed-Valence Trivanadium Nitride Having a V ₃ N ₄ Double-Diamond Core. Journal of the American Chemical Society, 2022, 144, 10201-10219.	13.7	3
6	Photoelectrochemical Conversion of Dinitrogen to Benzonitrile: Selectivity Control by Electrophile― versus Protonâ€Coupled Electron Transfer. Angewandte Chemie - International Edition, 2022, 61, .	13.8	16
7	Photoelectrochemical Conversion of Dinitrogen to Benzonitrile: Selectivity Control by Electrophile― versus Protonâ€Coupled Electron Transfer. Angewandte Chemie, 2022, 134, .	2.0	3
8	Solid-State Conformational Isomerism Lacking a Gas-Phase Energy Barrier: Its Structural, Spectroscopic, and Theoretical Identification in an Organochromium(III) Complex. Organometallics, 2022, 41, 1558-1564.	2.3	1
9	Applying Unconventional Spectroscopies to the Singleâ€Molecule Magnets, Co(PPh ₃) ₂ X ₂ (X=Cl, Br, I): Unveiling Magnetic Transitions and Spinâ€Phonon Coupling. Chemistry - A European Journal, 2021, 27, 11110-11125.	3.3	21
10	High-Frequency and -Field Electron Paramagnetic Resonance Spectroscopic Analysis of Metal–Ligand Covalency in a 4f ⁷ Valence Series (Eu ²⁺ , Gd ³⁺ , and) Tj ETQq0 0 0 rgBT /C)verbock 10	0 T £50 377 T
11	Synthesis and Characterization of Heteromultinuclear Ni/M Clusters (M = Fe, Ru, W) Including a Paramagnetic (NHC)Ni–WCp*(CO)3 Heterobinuclear Complex. Organometallics, 2021, 40, 2123-2132.	2.3	4
12	Astrid Sigel, Eva Freisinger, Roland K. O. Sigel (Eds): Metals ions in bio-imaging techniques,Âvol. 22 of Metal ions in life sciences. Transition Metal Chemistry, 2021, 46, 427.	1.4	0
13	Electronic Structure of Tetrahedral, <i>S</i> = 2, [Fe{(EP <i>ⁱ</i> Pr ₂) ₂ N} ₂], E = S, Se, Complexes: Investigation by High-Frequency and -Field Electron Paramagnetic Resonance, ⁵⁷ Fe MA¶ssbauer Spectroscopy, and Ouantum Chemical Studies. Inorganic Chemistry, 2021, 60, 10990-11005.	4.0	3
14	Hydrocarbon Oxidation by an Exposed, Multiply Bonded Iron(III) Oxo Complex. ACS Central Science, 2021, 7, 1751-1755.	11.3	14
15	Electronic Structure and Magnetic Properties of a Low-Spin CrII Complex: trans-[CrCl2(dmpe)2] (dmpe) Tj ETQq1	1,0,7843 4.0	14 rgBT /Ove
16	Nitrene Photochemistry of Manganese <i>N</i> â€Haloamides**. Angewandte Chemie - International Edition, 2021, 60, 26647-26655.	13.8	7
17	Nitrene Photochemistry of Manganese <i>N</i> â€Haloamides**. Angewandte Chemie, 2021, 133, 26851-26859.	2.0	2
18	Cobalt(II) "Scorpionate―complexes as electronic ground state models for cobalt-substituted zinc enzymes: Structure investigation by magnetic circular dichroism. Journal of Inorganic Biochemistry, 2020, 203, 110876.	3.5	3

#	Article	IF	CITATIONS
19	Advanced Paramagnetic Resonance Studies on Manganese and Iron Corroles with a Formal d ⁴ Electron Count. Inorganic Chemistry, 2020, 59, 1075-1090.	4.0	24
20	Ferromagnetically-coupled, triangular, [Bu4N]2[CuII3(μ3-Br)2(μ-4-O2N-pz)3Br3] complex revisited: The effect of coordinated halides on spin relaxation properties. Polyhedron, 2020, 177, 114258.	2.2	1
21	Chromium(III)-pyrazole complexes. X-Ray crystal structures, 1H NMR investigation of ligand fluxional behavior and EPR studies. Inorganica Chimica Acta, 2020, 502, 119299.	2.4	5
22	Structural and spectroscopic characterization of an Fe(VI) bis(imido) complex. Science, 2020, 370, 356-359.	12.6	40
23	A Mononuclear and High-Spin Tetrahedral Ti ^{II} Complex. Inorganic Chemistry, 2020, 59, 17834-17850.	4.0	12
24	Probing the Magnetic Anisotropy of Co(II) Complexes Featuring Redox-Active Ligands. Inorganic Chemistry, 2020, 59, 16178-16193.	4.0	22
25	Advanced Magnetic Resonance Studies of Tetraphenylporphyrinatoiron(III) Halides. Applied Magnetic Resonance, 2020, 51, 1411-1432.	1.2	6
26	Correction: Near-infrared ² E _g → ⁴ A _{2g} and visible LMCT luminescence from a molecular <i>bis</i> -(tris(carbene)borate) manganese(IV) complex. Canadian Journal of Chemistry, 2020, 98, 250-250.	1.1	4
27	Manganese tetraphenylporphyrin bromide and iodide. Studies of structures and magnetic properties. Polyhedron, 2020, 184, 114488.	2.2	9
28	Redox-Controlled Reactivity at Boron: Parallels to Frustrated Lewis/Radical Pair Chemistry. Inorganic Chemistry, 2020, 59, 10343-10352.	4.0	4
29	Singleâ€Ion Magnetic Behaviour in an Iron(III) Porphyrin Complex: A Dichotomy Between High Spin and 5/2–3/2 Spin Admixture. Chemistry - A European Journal, 2020, 26, 14242-14251.	3.3	9
30	Electronic Structure and Magnetic Properties of a Titanium(II) Coordination Complex. Inorganic Chemistry, 2020, 59, 6187-6201.	4.0	7
31	A Dimeric Hydride-Bridged Complex with Geometrically Distinct Iron Centers Giving Rise to an <i>S</i> = 3 Ground State. Journal of the American Chemical Society, 2019, 141, 11970-11975.	13.7	13
32	Design, Isolation, and Spectroscopic Analysis of a Tetravalent Terbium Complex. Journal of the American Chemical Society, 2019, 141, 13222-13233.	13.7	80
33	Dinuclear manganese(iii) complexes with bioinspired coordination and variable linkers showing weak exchange effects: a synthetic, structural, spectroscopic and computation study. Dalton Transactions, 2019, 48, 5909-5922.	3.3	10
34	Magnetization Slow Dynamics in Ferrocenium Complexes. Chemistry - A European Journal, 2019, 25, 10625-10632.	3.3	20
35	Combining HFEPR and NMR Spectroscopies to Characterize Organochromium(III) Complexes with Large Zero-Field Splitting. Organometallics, 2019, 38, 2179-2188.	2.3	13
36	High-Frequency and -Field EPR (HFEPR) Investigation of a Pseudotetrahedral Cr ^{IV} Siloxide Complex and Computational Studies of Related Cr ^{IV} L ₄ Systems. Inorganic Chemistry, 2019, 58, 4907-4920.	4.0	11

#	Article	IF	CITATIONS
37	Homoleptic Imidophosphorane Stabilization of Tetravalent Cerium. Inorganic Chemistry, 2019, 58, 5289-5304.	4.0	40
38	Finding a soft spot for vanadium: a P-bound OCP ligand. Chemical Communications, 2019, 55, 5966-5969.	4.1	20
39	Selectivity of tungsten mediated dinitrogen splitting <i>vs.</i> proton reduction. Chemical Science, 2019, 10, 10275-10282.	7.4	38
40	Synthesis, Characterization, and Electrochemical Analyses of Vanadocene Tetrametaphosphate and Phosphinate Derivatives. Organometallics, 2018, 37, 848-854.	2.3	8
41	A PNNH Pincer Ligand Allows Access to Monovalent Iron. Chemistry - A European Journal, 2018, 24, 1330-1341.	3.3	22
42	Square-planar Co(<scp>iii</scp>) in {O ₄ } coordination: large ZFS and reactivity with ROS. Chemical Communications, 2018, 54, 12045-12048.	4.1	9
43	Probing Redox Noninnocence of Copper and Zinc Bisâ€pyridylpyrrolides. European Journal of Inorganic Chemistry, 2018, 2018, 4893-4904.	2.0	4
44	Probing Hydrogen Atom Transfer at a Phosphorus(V) Oxide Bond Using a "Bulky Hydrogen Atom― Surrogate: Analogies to PCET. Journal of the American Chemical Society, 2018, 140, 15375-15383.	13.7	19
45	Observation of a Photogenerated Rh ₂ Nitrenoid Intermediate in C–H Amination. Journal of the American Chemical Society, 2018, 140, 10412-10415.	13.7	30
46	Crystallographic Evidence for a Sterically Induced Ferryl Tilt in a Nonâ€Heme Oxoiron(IV) Complex that Makes it a Better Oxidant. Angewandte Chemie - International Edition, 2018, 57, 9387-9391.	13.8	53
47	Crystallographic Evidence for a Sterically Induced Ferryl Tilt in a Nonâ€Heme Oxoiron(IV) Complex that Makes it a Better Oxidant. Angewandte Chemie, 2018, 130, 9531-9535.	2.0	16
48	Near-infrared ² E _g → ⁴ A _{2g} and visible LMCT luminescence from a molecular <i>bis</i> -(tris(carbene)borate) manganese(IV) complex. Canadian Journal of Chemistry, 2017, 95, 547-552.	1,1	52
49	Tuning Magnetic Anisotropy Through Ligand Substitution in Five-Coordinate Co(II) Complexes. Inorganic Chemistry, 2017, 56, 5253-5265.	4.0	27
50	Spectroscopic and Computational Studies of Spin States of Iron(IV) Nitrido and Imido Complexes. Inorganic Chemistry, 2017, 56, 4751-4768.	4.0	41
51	cis-Tetrachlorido-bis(indazole)osmium(iv) and its osmium(iii) analogues: paving the way towards the cis-isomer of the ruthenium anticancer drugs KP1019 and/or NKP1339. Dalton Transactions, 2017, 46, 11925-11941.	3.3	11
52	A five-coordinate manganese(<scp>iii</scp>) complex of a salen type ligand with a positive axial anisotropy parameter D. Dalton Transactions, 2017, 46, 11817-11829.	3.3	20
53	Ligand Substituent Effects in Manganese Pyridinophane Complexes: Implications for Oxygen-Evolving Catalysis. Inorganic Chemistry, 2017, 56, 14315-14325.	4.0	22
54	HFEPR and Computational Studies on the Electronic Structure of a High-Spin Oxidoiron(IV) Complex in Solution. Inorganic Chemistry, 2016, 55, 3933-3945.	4.0	11

#	Article	IF	CITATIONS
55	A Neutrally Charged Trimethylmanganese(III) Complex: Synthesis, Characterization, and Disproportionation Chemistry. Organometallics, 2016, 35, 2683-2688.	2.3	8
56	Synthesis of Co ^{II} –NO [–] Complexes and Their Reactivity as a Source of Nitroxyl. Journal of the American Chemical Society, 2016, 138, 12459-12471.	13.7	25
57	Measuring giant anisotropy in paramagnetic transition metal complexes with relevance to single-ion magnetism. Dalton Transactions, 2016, 45, 16751-16763.	3.3	57
58	Spectroscopic and Computational Investigation of Low‣pin MnIII Bis(scorpionate) Complexes. European Journal of Inorganic Chemistry, 2016, 2016, 2413-2423.	2.0	13
59	Charge and Spin States in Schiff Base Metal Complexes with a Disiloxane Unit Exhibiting a Strong Noninnocent Ligand Character: Synthesis, Structure, Spectroelectrochemistry, and Theoretical Calculations. Inorganic Chemistry, 2015, 54, 5691-5706.	4.0	29
60	Secondary Coordination Sphere Effects in Ruthenium(III) Tetraammine Complexes: Role of the Coordinated Water Molecule. Inorganic Chemistry, 2015, 54, 2067-2080.	4.0	11
61	High-frequency and -field electron paramagnetic resonance of vanadium(IV, III, and II) complexes. Coordination Chemistry Reviews, 2015, 301-302, 123-133.	18.8	65
62	Advanced paramagnetic resonance spectroscopies of iron–sulfur proteins: Electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM). Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1370-1394.	4.1	34
63	Accessing Ni(III)-Thiolate Versus Ni(II)-Thiyl Bonding in a Family of Ni–N ₂ S ₂ Synthetic Models of NiSOD. Inorganic Chemistry, 2015, 54, 3815-3828.	4.0	32
64	Quantifying the Electron Donor and Acceptor Abilities of the Ketimide Ligands in M(Nâ•C ^{<i>t</i>} Bu ₂) ₄ (M = V, Nb, Ta). Inorganic Chemistry, 2015, 54, 10081-10095.	4.0	24
65	Simulating Frequency-Domain Electron Paramagnetic Resonance: Bridging the Gap between Experiment and Magnetic Parameters for High-Spin Transition-Metal Ion Complexes. Journal of Physical Chemistry B, 2015, 119, 13816-13824.	2.6	47
66	Electronic Structure and Reactivity of a Well-Defined Mononuclear Complex of Ti(II). Inorganic Chemistry, 2015, 54, 10380-10397.	4.0	34
67	Magnetic Properties and Electronic Structure of Manganese-Based Blue Pigments: A High-Frequency and -Field EPR Study. Inorganic Chemistry, 2015, 54, 9040-9045.	4.0	21
68	High-frequency and high-field electron paramagnetic resonance (HFEPR): a new spectroscopic tool for bioinorganic chemistry. Journal of Biological Inorganic Chemistry, 2014, 19, 297-318.	2.6	74
69	Spectroscopic Characterization of L-ascorbic Acid-induced Reduction of Vanadium(V) Dipicolinates: Formation of Vanadium(III) and Vanadium(IV) Complexes from Vanadium(V) Dipicolinate Derivatives. Inorganica Chimica Acta, 2014, 420, 112-119.	2.4	19
70	Low-Spin Hexacoordinate Mn(III): Synthesis and Spectroscopic Investigation of Homoleptic Tris(pyrazolyl)borate and Tris(carbene)borate Complexes. Inorganic Chemistry, 2013, 52, 144-159.	4.0	55
71	Copper(II) Complexes with Schiff Bases Containing a Disiloxane Unit: Synthesis, Structure, Bonding Features and Catalytic Activity for Aerobic Oxidation of Benzyl Alcohol. European Journal of Inorganic Chemistry, 2013, 2013, 1458-1474.	2.0	58
72	Slow magnetic relaxation in the tetrahedral cobalt(II) complexes [Co(EPh)4]2â^' (EO, S, Se). Polyhedron, 2013, 64, 209-217.	2.2	205

#	Article	IF	CITATIONS
73	Marked Stabilization of Redox States and Enhanced Catalytic Activity in Galactose Oxidase Models Based on Transition Metal <i>S</i> -Methylisothiosemicarbazonates with â^'SR Group in Ortho Position to the Phenolic Oxygen. Inorganic Chemistry, 2013, 52, 7524-7540.	4.0	22
74	Electronic Structures of Octahedral Ni(II) Complexes with "Click―Derived Triazole Ligands: A Combined Structural, Magnetometric, Spectroscopic, and Theoretical Study. Inorganic Chemistry, 2013, 52, 6880-6892.	4.0	78
75	A Radical Transfer Pathway in Spore Photoproduct Lyase. Biochemistry, 2013, 52, 3041-3050.	2.5	32
76	Correction to A Radical Transfer Pathway in Spore Photoproduct Lyase. Biochemistry, 2013, 52, 4869-4869.	2.5	0
77	Formation and Reactivity of the Terminal Vanadium Nitride Functionality. European Journal of Inorganic Chemistry, 2013, 2013, 3916-3929.	2.0	26
78	Magnetic Resonance Spectroscopy in Bio(in)organic Chemistry and in Mechanistic Systems Biology: A Tribute to Ivano Bertini. ChemBioChem, 2013, 14, 1671-1675.	2.6	0
79	Vanadocene <i>de Novo</i> : Spectroscopic and Computational Analysis of Bis(η ⁵ -cyclopentadienyl)vanadium(II). Organometallics, 2012, 31, 8265-8274.	2.3	25
80	High-frequency and -field electron paramagnetic resonance of transition metal ion (d block) coordination complexes. Electron Paramagnetic Resonance, 2012, , 209-263.	0.2	31
81	High Spin Co(I): High-Frequency and -Field EPR Spectroscopy of CoX(PPh ₃) ₃ (X) Tj E	TQq110.7	84314 rgBT (
82	Correction to Probing the Reaction Mechanism of Spore Photoproduct Lyase (SPL) via Diastereoselectively Labeled Dinucleotide SP TpT Substrates. Journal of the American Chemical Society, 2012, 134, 20858-20858.	13.7	1
83	AirSR, a [2Fe-2S] Cluster-Containing Two-Component System, Mediates Global Oxygen Sensing and Redox Signaling in Staphylococcus aureus. Journal of the American Chemical Society, 2012, 134, 305-314.	13.7	78
84	Simple Ligand-Field Theory of d4 and d6 Transition Metal Complexes with a C3 Symmetry Axis. Inorganic Chemistry, 2012, 51, 6000-6010.	4.0	41
85	Mechanistic Studies of the Spore Photoproduct Lyase via a Single Cysteine Mutation. Biochemistry, 2012, 51, 7173-7188.	2.5	31
86	EPR and 57Fe ENDOR investigation of 2Fe ferredoxins from Aquifex aeolicus. Journal of Biological Inorganic Chemistry, 2012, 17, 1137-1150.	2.6	9
87	Electronic Structure of Nickel(II) and Zinc(II) Borohydrides from Spectroscopic Measurements and Computational Modeling. Inorganic Chemistry, 2012, 51, 2793-2805.	4.0	28
88	A Planar Three-Coordinate Vanadium(II) Complex and the Study of Terminal Vanadium Nitrides from N ₂ : A Kinetic or Thermodynamic Impediment to N–N Bond Cleavage?. Journal of the American Chemical Society, 2012, 134, 13035-13045.	13.7	77
89	Probing the Reaction Mechanism of Spore Photoproduct Lyase (SPL) via Diastereoselectively Labeled Dinucleotide SP TpT Substrates. Journal of the American Chemical Society, 2011, 133, 10434-10447.	13.7	34
90	Crystal Structure and Characterization of Particulate Methane Monooxygenase from <i>Methylocystis</i> species Strain M. Biochemistry, 2011, 50, 10231-10240.	2.5	130

#	Article	IF	CITATIONS
91	Syntheses, Electronic Structures, and EPR/UVâ~'Visâ~'NIR Spectroelectrochemistry of Nickel(II), Copper(II), and Zinc(II) Complexes with a Tetradentate Ligand Based on S-Methylisothiosemicarbazide. Inorganic Chemistry, 2011, 50, 2918-2931.	4.0	43
92	⁵⁷ Fe ENDOR Spectroscopy and â€~Electron Inventory' Analysis of the Nitrogenase E ₄ Intermediate Suggest the Metal-Ion Core of FeMo-Cofactor Cycles Through Only One Redox Couple. Journal of the American Chemical Society, 2011, 133, 17329-17340.	13.7	75
93	Toward Functional Ni-SOD Biomimetics: Achieving a Structural/Electronic Correlation with Redox Dynamics. Inorganic Chemistry, 2011, 50, 9216-9218.	4.0	32
94	High-frequency and -field EPR and FDMRS study of the [Fe(H2O)6]2+ ion in ferrous fluorosilicate. Journal of Magnetic Resonance, 2011, 213, 158-165.	2.1	18
95	Reactivity Studies of a Masked Threeâ€Coordinate Vanadium(II) Complex. Angewandte Chemie - International Edition, 2010, 49, 9871-9875.	13.8	56
96	Spin relaxation in a ferromagnetically coupled triangular Cu3 complex. Chemical Physics Letters, 2010, 493, 185-190.	2.6	24
97	Overview of ligand versus metal centered redox reactions in tetraaza macrocyclic complexes of nickel with a focus on electron paramagnetic resonance studies. Journal of the Brazilian Chemical Society, 2010, 21, 1139-1157.	0.6	15
98	Family of V(III)-Tristhiolato Complexes Relevant to Functional Models of Vanadium Nitrogenase: Synthesis and Electronic Structure Investigations by Means of High-Frequency and -Field Electron Paramagnetic Resonance Coupled to Quantum Chemical Computations Inorganic Chemistry, 2010, 49, 977-988.	4.0	57
99	Electronic Structure of a Paramagnetic {MNO}6 Complex: MnNO 5,5-Tropocoronand. Inorganic Chemistry, 2010, 49, 2701-2705.	4.0	8
100	Observation of Organometallic and Radical Intermediates Formed during the Reaction of Methyl-Coenzyme M Reductase with Bromoethanesulfonate. Biochemistry, 2010, 49, 6866-6876.	2.5	18
101	Cobalt(II) "Scorpionate―Complexes as Models for Cobalt-Substituted Zinc Enzymes: Electronic Structure Investigation by High-Frequency and -Field Electron Paramagnetic Resonance Spectroscopy. Journal of the American Chemical Society, 2010, 132, 5241-5253.	13.7	66
102	Intermolecular C–H bond activation of benzene and pyridines by a vanadium(iii) alkylidene including a stepwise conversion of benzene to a vanadium-benzyne complex. Chemical Science, 2010, 1, 351.	7.4	64
103	Determination of intermolecular copper–copper distances from the EPR half-field transitions and their comparison with distances from X-ray structures: applications to copper(II) complexes with biologically important ligands. Transition Metal Chemistry, 2009, 34, 129-134.	1.4	10
104	Synthesis and spectroscopic investigations of four-coordinate nickel complexes supported by a strongly donating scorpionate ligand. Inorganica Chimica Acta, 2009, 362, 4449-4460.	2.4	39
105	Aminocarboxylate complexes of vanadium(III): Electronic structure investigation by high-frequency and -field electron paramagnetic resonance spectroscopy. Journal of Inorganic Biochemistry, 2009, 103, 487-495.	3.5	18
106	Evidence for the formation of a mononuclear ferric–hydroperoxo complex via the reaction of dioxygen with an (N4S(thiolate))iron(ii) complex. Chemical Communications, 2009, , 6828.	4.1	20
107	Spectroscopic and Computational Characterization of the Base-off Forms of Cob(II)alamin. Journal of Physical Chemistry B, 2009, 113, 5245-5254.	2.6	35
108	Unsymmetrical Fe ^{III} Co ^{II} and Ga ^{III} Co ^{II} Complexes as Chemical Hydrolases: Biomimetic Models for Purple Acid Phosphatases (PAPs). Inorganic Chemistry, 2009, 48, 7905-7921.	4.0	57

#	Article	IF	CITATIONS
109	Reactivity of the Radical NO with a Masked Form of 14 Valence Electron (PNP)Rh: Forming Rh(0, I or II)?. European Journal of Inorganic Chemistry, 2008, 2008, 4704-4709.	2.0	8
110	Determination by High-Frequency and -Field EPR of Zero-Field Splitting in Iron(IV) Oxo Complexes: Implications for Intermediates in Nonheme Iron Enzymes. Inorganic Chemistry, 2008, 47, 3483-3485.	4.0	27
111	A Family of Cyanide-Bridged Molecular Squares: Structural and Magnetic Properties of [{MIICl2}2{CoII(triphos)(CN)2}2]·xCH2Cl2, M = Mn, Fe, Co, Ni, Zn. Inorganic Chemistry, 2008, 47, 2074-2082.	4.0	39
112	The Metal Centers of Particulate Methane Monooxygenase from <i>Methylosinus trichosporium</i> OB3b. Biochemistry, 2008, 47, 6793-6801.	2.5	130
113	Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry and Cell Biology, 2007, 39, 44-84.	2.8	10,891
114	Spectroscopic Detection and Theoretical Confirmation of the Role of Cr2(CO)5(C5R5)2and ·Cr(CO)2(ketene)(C5R5) as Intermediates in Carbonylation of NNCHSiMe3to OCCHSiMe3by ·Cr(CO)3(C5R5) (R = H, CH3). Journal of the American Chemical Society, 2007, 129, 14388-14400.	13.7	38
115	Biochemical and Spectroscopic Studies of the Electronic Structure and Reactivity of a Methylâ^'Ni Species Formed on Methyl-Coenzyme M Reductase. Journal of the American Chemical Society, 2007, 129, 11030-11032.	13.7	65
116	A Planar Carboxylate-Rich Tetrairon(II) Complex and Its Conversion to Linear Triiron(II) and Paddlewheel Diiron(II) Complexes. Inorganic Chemistry, 2007, 46, 10754-10770.	4.0	30
117	Targeted Guanine Oxidation by a Dinuclear Copper(II) Complex at Single Stranded/Double Stranded DNA Junctions. Inorganic Chemistry, 2006, 45, 7144-7159.	4.0	70
118	Characterization of the Particulate Methane Monooxygenase Metal Centers in Multiple Redox States by X-ray Absorption Spectroscopy. Inorganic Chemistry, 2006, 45, 8372-8381.	4.0	89
119	Electronic Structure of Four-CoordinateC3vNickel(II) Scorpionate Complexes:Â Investigation by High-Frequency and -Field Electron Paramagnetic Resonance and Electronic Absorption Spectroscopies. Inorganic Chemistry, 2006, 45, 8930-8941.	4.0	93
120	Trinuclear, Antiferromagnetically Coupled CullComplex with an EPR Spectrum of Mononuclear Cull:Â Effect of Alcoholic Solvents. Inorganic Chemistry, 2006, 45, 8841-8843.	4.0	45
121	Time evolution of a sol–gel process monitored by Mn2+ EPR spectroscopy. Journal of Non-Crystalline Solids, 2006, 352, 3158-3165.	3.1	9
122	A perspective on applications of ligand-field analysis: inspiration from electron paramagnetic resonance spectroscopy of coordination complexes of transition metal ions. Journal of the Brazilian Chemical Society, 2006, 17, 1501-1515.	0.6	30
123	Multi-frequency, high-field EPR as a powerful tool to accurately determine zero-field splitting in high-spin transition metal coordination complexes. Coordination Chemistry Reviews, 2006, 250, 2308-2324.	18.8	326
124	Tunable-frequency high-field electron paramagnetic resonance. Journal of Magnetic Resonance, 2006, 178, 174-183.	2.1	101
125	High-frequency/high-field EPR spectroscopy of the high-spin ferrous ion in hexaaqua complexes. Magnetic Resonance in Chemistry, 2005, 43, S130-S139.	1.9	40
126	High-Frequency and -Field EPR Investigation of a Manganese(III) N-Confused Porphyrin Complex, [Mn(NCTPP)(py)2]. Inorganic Chemistry, 2005, 44, 4451-4453.	4.0	39

#	Article	IF	CITATIONS
127	Synthesis, Crystal Structure, and High-Precision High-Frequency and -Field Electron Paramagnetic Resonance Investigation of a Manganese(III) Complex:Â [Mn(dbm)2(py)2](ClO4). Inorganic Chemistry, 2005, 44, 187-196.	4.0	48
128	Synthesis, Characterization, and Physicochemical Properties of Manganese(III) and Manganese(V)â^'Oxo Corrolazines. Inorganic Chemistry, 2005, 44, 4485-4498.	4.0	94
129	Enzyme Control of Small-Molecule Coordination in FosA as Revealed by31P Pulsed ENDOR and ESE-EPR. Journal of the American Chemical Society, 2005, 127, 8310-8319.	13.7	25
130	The Copper Chelator Methanobactin fromMethylosinustrichosporiumOB3b Binds Copper(I). Journal of the American Chemical Society, 2005, 127, 17142-17143.	13.7	49
131	Role of oxygen radicals in DNA damage and cancer incidence. Molecular and Cellular Biochemistry, 2004, 266, 37-56.	3.1	1,387
132	High-Frequency and -Field EPR of a Pseudo-octahedral Complex of High-Spin Fe(II):Â Bis(2,2â€~-bi-2-thiazoline)bis(isothiocyanato)iron(II). Journal of the American Chemical Society, 2004, 126, 6574-6575.	13.7	36
133	An Example of O2Binding in a Cobalt(II) Corrole System and High-Valent Cobaltâ	13.7	93
134	Pseudooctahedral Complexes of Vanadium(III):Â Electronic Structure Investigation by Magnetic and Electronic Spectroscopy. Inorganic Chemistry, 2004, 43, 5645-5658.	4.0	64
135	Definitive Spectroscopic Determination of Zero-Field Splitting in High-Spin Cobalt(II). Journal of the American Chemical Society, 2004, 126, 2148-2155.	13.7	107
136	High frequency and field EPR spectroscopy of Mn(III) complexes in frozen solutions. Journal of Magnetic Resonance, 2003, 162, 454-465.	2.1	51
137	Direct Observation of Fine Structure Transitions in a Paramagnetic Nickel(II) Complex Using Far-Infrared Magnetic Spectroscopy:Â A New Method for Studying High-Spin Transition Metal Complexes. Inorganic Chemistry, 2003, 42, 1788-1790.	4.0	49
138	Role of Radicals and Singlet Oxygen in Photoactivated DNA Cleavage by the Anticancer Drug Camptothecin:Â An Electron Paramagnetic Resonance Study. Journal of Physical Chemistry B, 2003, 107, 2415-2425.	2.6	70
139	High-Frequency and -Field EPR Spectroscopy of Tris(2,4-pentanedionato)manganese(III):  Investigation of Solid-State versus Solution Jahnâ^'Teller Effects. Inorganic Chemistry, 2003, 42, 4610-4618.	4.0	107
140	Frequency-domain magnetic resonance spectroscopy of molecular magnetic materials. Physical Chemistry Chemical Physics, 2003, 5, 3837-3843.	2.8	92
141	Paramagnetic Resonance of Metallobiomolecules: Introduction and Overview. ACS Symposium Series, 2003, , 1-14.	0.5	0
142	Triangular, Ferromagnetically-Coupled Cull3â^'Pyrazolato Complexes as Possible Models of Particulate Methane Monooxygenase (pMMO). Inorganic Chemistry, 2003, 42, 5801-5803.	4.0	95
143	EPR Study of Substrate Binding to the Mn(II) Active Site of the Bacterial Antibiotic Resistance Enzyme FosA:Â A Better Way To Examine Mn(II). Journal of the American Chemical Society, 2002, 124, 2318-2326.	13.7	52
144	170 ENDOR Detection of a Solvent-Derived Niâ^'(OHx)â^'Fe Bridge That Is Lost upon Activation of the Hydrogenase from Desulfovibrio gigas. Journal of the American Chemical Society, 2002, 124, 281-286.	13.7	132

#	Article	IF	CITATIONS
145	EPR Spectra from "EPR-Silent―Species:  High-Frequency and High-Field EPR Spectroscopy of Pseudotetrahedral Complexes of Nickel(II). Inorganic Chemistry, 2002, 41, 4478-4487.	4.0	117
146	High-frequency and -field electron paramagnetic resonance of high-spin manganese(III) in tetrapyrrole complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2002, 58, 1113-1127.	3.9	32
147	High-Frequency and Field EPR Investigation of (8,12-Diethyl-2,3,7,13,17,18-hexamethylcorrolato)manganese(III). Journal of the American Chemical Society, 2001, 123, 7890-7897.	13.7	60
148	Cryoreduction of Methyl-Coenzyme M Reductase:Â EPR Characterization of Forms, MCRox1and MCRred1. Journal of the American Chemical Society, 2001, 123, 5853-5860.	13.7	61
149	Multifrequency EPR Spectra of Molecular Oxygen in Solid Air. Journal of Magnetic Resonance, 2000, 146, 375-378.	2.1	34
150	Investigation of exchange couplings in [Fe3S4]+ clusters by electron spin-lattice relaxation. Journal of Biological Inorganic Chemistry, 2000, 5, 369-380.	2.6	22
151	An Electron Paramagnetic Resonance Study of Mn2(H2O)(OAc)4(tmeda)2(tmeda) Tj ETQq1 1 0.784314 rgBT /O Inorganic Chemistry, 2000, 39, 3379-3385.	verlock 10 4.0) Tf 50 507 T 42
152	On the Assignment of Nickel Oxidation States of the Ox1, Ox2 Forms of Methylâ^'Coenzyme M Reductase. Journal of the American Chemical Society, 2000, 122, 182-183.	13.7	64
153	High-Frequency and -Field Electron Paramagnetic Resonance of High-Spin Manganese(III) in Porphyrinic Complexes. Inorganic Chemistry, 1999, 38, 6121-6129.	4.0	129
154	Rhodospirillum rubrumCO-Dehydrogenase. Part 2. Spectroscopic Investigation and Assignment of Spinâ''Spin Coupling Signals. Journal of the American Chemical Society, 1999, 121, 11045-11057.	13.7	30
155	Investigation of the Unusual Electronic Structure ofPyrococcusfuriosus4Fe Ferredoxin by EPR Spectroscopy of Protein Reduced at Ambient and Cryogenic Temperatures. Inorganic Chemistry, 1999, 38, 3550-3553.	4.0	14
156	EPR Spectra from "EPR-Silent―Species: High-Field EPR Spectroscopy of Aqueous Chromium(II). Inorganic Chemistry, 1998, 37, 5769-5775.	4.0	85
157	Role of the [Fe4S4] Cluster in Mediating Disulfide Reduction in Spinach Ferredoxin:Thioredoxin Reductaseâ€. Biochemistry, 1998, 37, 4612-4620.	2.5	68
158	A Multinuclear ENDOR Study of the C-Cluster in CO Dehydrogenase from Clostridium thermoaceticum:  Evidence for HxO and Histidine Coordination to the [Fe4S4] Center. Journal of the American Chemical Society, 1998, 120, 8767-8776.	13.7	91
159	Site Valencies and Spin Coupling in the 3Fe and 4Fe (S= 1/2) Clusters ofPyrococcus furiosusFerredoxin by57Fe ENDOR. Journal of the American Chemical Society, 1998, 120, 861-870.	13.7	28
160	Nickel in F430. , 1998, , 31-63.		34
161	Investigation by EPR and ENDOR Spectroscopy of the Nickel(I) Form of Cofactor F4301ofMethanobacterium thermoautotrophicumand of Nickel(I) Octaethylisobacteriochlorin. Journal of the American Chemical Society, 1997, 119, 733-743.	13.7	45
162	EPR Spectra from "EPR-Silent―Species: High-Field EPR Spectroscopy of Manganese(III) Porphyrins. Journal of the American Chemical Society, 1997, 119, 8722-8723.	13.7	142

Joshua Telser

#	Article	IF	CITATIONS
163	Ferromagnetic versus Antiferromagnetic Exchange in Five Structurally Analogous Carboxylate-Bridged Trinuclear Ferrous Complexes. Inorganic Chemistry, 1995, 34, 3011-3024.	4.0	42
164	Cyanide Binding to the Novel 4Fe Ferredoxin from Pyrococcus furiosus: Investigation by EPR and ENDOR Spectroscopy. Journal of the American Chemical Society, 1995, 117, 5133-5140.	13.7	44
165	Interaction of Tl+ and Cs+ with the [Fe3S4] Cluster of Pyrococcus furiosus Ferredoxin: Investigation by Resonance Raman, MCD, EPR, and ENDOR Spectroscopy. Journal of the American Chemical Society, 1994, 116, 5722-5729.	13.7	26
166	Influence of Zero-Field Splitting and State Mixing on Ferromagnetic Exchange in the Integrated-Stack Charge-Transfer Salt [Cp2Fe]+[Co(HMPA-B)] Inorganic Chemistry, 1994, 33, 3533-3537.	4.0	11
167	Metalloenzyme Active-Site Structure and Function through Multifrequency CW and Pulsed ENDOR. Biological Magnetic Resonance, 1993, , 151-218.	0.4	95
168	Molecular geometry of vanadyl-adenine nucleotide complexes determined by EPR, ENDOR, and molecular modeling. Journal of the American Chemical Society, 1992, 114, 6219-6226.	13.7	49
169	pH Dependence of relaxivities and hydration numbers of gadolinium(III) complexes of macrocyclic amino carboxylates. Inorganic Chemistry, 1992, 31, 5597-5600.	4.0	90
170	Quantitative dependence of MR signal intensity on tissue concentration of Gd(HP-DO3A) in the nephrectomized rat. Magnetic Resonance Imaging, 1992, 10, 97-108.	1.8	89
171	Proton NMR assignment and melting temperature study of cis-syn and trans-syn thymine dimer containing duplexes of d(CCTATTATGC).cntdot.d(GCATAATACC). Biochemistry, 1990, 29, 8858-8866.	2.5	122
172	pH dependence of relaxivities and hydration numbers of gadolinium(III) complexes of linear amino carboxylates. Inorganic Chemistry, 1990, 29, 4468-4473.	4.0	99
173	DNA oligomers and duplexes containing a covalently attached derivative of tris(2,2 -bipyridine)ruthenium(II): synthesis and characterization by thermodynamic and optical spectroscopic measurements. Journal of the American Chemical Society, 1989, 111, 7221-7226.	13.7	67
174	DNA duplexes covalently labeled at two sites: synthesis and characterization by steady-state and time-resolved optical spectroscopies. Journal of the American Chemical Society, 1989, 111, 7226-7232.	13.7	74
175	Synthesis and characterization of DNA oligomers and duplexes containing covalently attached molecular labels: comparison of biotin, fluorescein, and pyrene labels by thermodynamic and optical spectroscopic measurements. Journal of the American Chemical Society, 1989, 111, 6966-6976.	13.7	141
176	Evidence for N coordination to Fe in the [2Fe-2S] center in yeast mitochondrial complex III Comparison with similar findings for analogous bacterial [2Fe-2S] proteins. FEBS Letters, 1987, 214, 117-121.	2.8	64
177	Solution chemistry of rhodium trifluoroacetate in the presence of phosphorus donors. Inorganic Chemistry, 1986, 25, 2989-2992.	4.0	16
178	Correction: Reinvestigation of the Electronic and Magnetic Properties of Ruthenium Butyrate Chloride. Inorganic Chemistry, 1985, 24, 4765-4765.	4.0	56
179	Spin trapping of a cobalt-dioxygen complex. Journal of the American Chemical Society, 1984, 106, 5353-5355.	13.7	30
180	Reactions of rhodium trifluoroacetate with various Lewis bases. Formation of 4:1 complexes with pyridine and tert-butyl isocyanide and bond cleavage with phosphorus donors. Inorganic Chemistry, 1984, 23, 2599-2606.	4.0	32

#	Article	IF	CITATIONS
181	EPR spectra and bonding in the 2:1 base adducts of Rh2(carboxylate)4+. Inorganic Chemistry, 1984, 23, 3120-3124.	4.0	16
182	Reinvestigation of the electronic and magnetic properties of ruthenium butyrate chloride. Inorganic Chemistry, 1984, 23, 3114-3120.	4.0	99
183	Action of strong acids on M2(O2CR)4 species. Inorganic Chemistry, 1984, 23, 1798-1803.	4.0	24
184	The stereochemistry of allohimachalol. Tetrahedron Letters, 1980, 21, 325-326.	1.4	5