Cheng-yin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/876388/publications.pdf

Version: 2024-02-01

108 papers 6,061 citations

35 h-index 74163 75 g-index

108 all docs

108 docs citations

108 times ranked 7954 citing authors

#	Article	IF	Citations
1	Flexible sodium-ion capacitors boosted by high electrochemically-reactive and structurally-stable Sb2S3 nanowire/Ti3C2Tx MXene film anodes. Nano Research, 2023, 16, 5592-5600.	10.4	20
2	Nitrogen-rich layered carbon for adsorption of typical volatile organic compounds and low-temperature thermal regeneration. Journal of Hazardous Materials, 2022, 424, 127348.	12.4	30
3	Development of Smallâ€Scale Monitoring and Modeling Strategies for Safe Lithiumâ€ion Batteries. Batteries and Supercaps, 2022, 5, .	4.7	8
4	Toxicity assessments and transcriptional effects of monofunctionalized Pt(II) complex under dark and light irradiation condition in Caenorhabditis elegans. Journal of Inorganic Biochemistry, 2022, 230, 111720.	3.5	2
5	Construction of a 2D Layered Phosphorusâ€doped Graphitic Carbon Nitride/BiOBr Heterojunction for Highly Efficient Photocatalytic Disinfection. Chemistry - an Asian Journal, 2022, 17, .	3.3	8
6	Ni3S2 nanostrips@FeNi-NiFe2O4 nanoparticles embedded in N-doped carbon microsphere: An improved electrocatalyst for oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 617, 1-10.	9.4	25
7	Silk Fibroin Coating Enables Dendriteâ€free Zinc Anode for Longâ€Life Aqueous Zincâ€Ion Batteries. ChemSusChem, 2022, 15, .	6.8	15
8	Tin nanoparticle in-situ decorated on nitrogen-deficient carbon nitride with excellent sodium storage performance. Journal of Colloid and Interface Science, 2022, 624, 40-50.	9.4	9
9	Review and prospects for room-temperature sodium-sulfur batteries. Materials Research Letters, 2022, 10, 691-719.	8.7	19
10	Desulfurization through Photocatalytic Oxidation: A Critical Review. ChemSusChem, 2021, 14, 492-511.	6.8	51
11	Pristine Graphic Carbon Nitride Quantum Dots for the Visualized Detection of Latent Fingerprints. Analytical Sciences, 2021, 37, 1497-1503.	1.6	4
12	Hedgehog-like Bi ₂ S ₃ nanostructures: a novel composite soft template route to the synthesis and sensitive electrochemical immunoassay of the liver cancer biomarker. Chemical Communications, 2021, 57, 1766-1769.	4.1	30
13	2D conductive MOFs with sufficient redox sites: reduced graphene oxide/Cu-benzenehexathiolate composites as high capacity anode materials for lithium-ion batteries. Nanoscale, 2021, 13, 7751-7760.	5.6	37
14	Metal–organic frameworks as separators and electrolytes for lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 7301-7316.	10.3	45
15	Nanoengineering of Advanced Carbon Materials for Sodiumâ€lon Batteries. Small, 2021, 17, e2007431.	10.0	72
16	Enhanced Electrochemiluminescence in a Microwell Bipolar Electrode Array Prepared with an Optical Fiber Bundle. ChemElectroChem, 2021, 8, 1473-1477.	3.4	7
17	Sodiumâ€Ion Capacitors: Recent Development in Electrode Materials. Batteries and Supercaps, 2021, 4, 1680-1700.	4.7	9
18	A universal strategy towards high–energy aqueous multivalent–ion batteries. Nature Communications, 2021, 12, 2857.	12.8	126

#	Article	IF	CITATIONS
19	Enantioselective recognition of amino acid based on electrochemical deposition and X-ray diffraction technology. Journal of Inorganic Biochemistry, 2021, 218, 111398.	3.5	2
20	Graphite Carbon Nitride and Its Composites for Medicine and Health Applications. Chemistry - an Asian Journal, 2021, 16, 2003-2013.	3.3	12
21	Nitrogen Doped Carbon Coated Bi Microspheres as Highâ€performance Anode for Half and Full Sodium Ion Batteries. Chemistry - an Asian Journal, 2021, 16, 2314-2320.	3.3	19
22	Highly Efficient Adsorption of Bilirubin by Ti ₃ C ₂ T _x MXene. Chemistry - an Asian Journal, 2021, 16, 1949-1955.	3.3	19
23	Removal of extremely low concentration cobalt by intercalation composite material of carbon nitride/titanium dioxide. Journal of Hazardous Materials, 2021, 415, 125680.	12.4	13
24	Crosslinking Nanoarchitectonics of Nitrogenâ€doped Carbon/MoS ₂ Nanosheets/Ti ₃ C ₂ T _{<i>x</i>>} MXene Hybrids for Highly Reversible Sodium Storage. ChemSusChem, 2021, 14, 5293-5303.	6.8	22
25	Pillar[5]areneâ€based "Threeâ€components―Supramolecular Assembly and the Performance of Nitrobenzeneâ€based Explosive Fluorescence Sensing. ChemistrySelect, 2021, 6, 9363-9367.	1.5	4
26	Boosting the lithium storage performance by synergistically coupling ultrafine heazlewoodite nanoparticle with N, S co-doped carbon. Journal of Colloid and Interface Science, 2021, 604, 368-377.	9.4	24
27	Recent progress in quasi-solid and solid polymer electrolytes for multivalent metal-ion batteries. Journal of Materials Chemistry A, 2021, 9, 24175-24194.	10.3	45
28	Bismuth Nanoparticles Anchored on Ti ₃ C ₂ T _x MXene Nanosheets for Highâ€Performance Sodiumâ€Ion Batteries. Chemistry - an Asian Journal, 2021, 16, 3774-3780.	3.3	17
29	Novel carbon and defects co-modified g-C3N4 for highly efficient photocatalytic degradation of bisphenol A under visible light. Journal of Hazardous Materials, 2020, 384, 121323.	12.4	108
30	Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in Highâ€Energy Batteries. Advanced Materials, 2020, 32, e1903891.	21.0	173
31	Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries. Nature Communications, 2020, $11,5429$.	12.8	129
32	Photocatalytic Advanced Oxidation Processes for Water Treatment: Recent Advances and Perspective. Chemistry - an Asian Journal, 2020, 15, 3239-3253.	3.3	118
33	Criteria of active sites in nonradical persulfate activation process from integrated experimental and theoretical investigations: boron–nitrogen-co-doped nanocarbon-mediated peroxydisulfate activation as an example. Environmental Science: Nano, 2020, 7, 1899-1911.	4.3	60
34	Promoting electrocatalytic nitrogen reduction to ammonia <i>via</i> Fe-boosted nitrogen activation on MnO ₂ surfaces. Journal of Materials Chemistry A, 2020, 8, 13679-13684.	10.3	38
35	Application of Photocatalytic Materials in Sensors. Advanced Materials Technologies, 2020, 5, 1900993.	5.8	32
36	A robust flame retardant fluorinated polyimide nanofiber separator for high-temperature lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 14788-14798.	10.3	40

#	Article	lF	Citations
37	Recent advances in self-actuation and self-sensing materials: State of the art and future perspectives. Talanta, 2020, 212, 120808.	5.5	18
38	Electrochemically assisted synthesis of poly(3,4-dihydroxyphenylalanine) fluorescent organic nanoparticles for sensing applications. New Journal of Chemistry, 2020, 44, 7823-7831.	2.8	2
39	Recent Progress in Twoâ€Dimensional Antimicrobial Nanomaterials. Chemistry - A European Journal, 2019, 25, 929-944.	3.3	59
40	An Improved Metalâ€toâ€Ligand Charge Transfer Mechanism for Photocatalytic Hydrogen Evolution. ChemSusChem, 2019, 12, 4221-4228.	6.8	24
41	Photoelectrochemical determination of malathion by using CuO modified with a metal-organic framework of type Cu-BTC. Mikrochimica Acta, 2019, 186, 481.	5.0	25
42	High-Power and Ultralong-Life Aqueous Zinc-Ion Hybrid Capacitors Based on Pseudocapacitive Charge Storage. Nano-Micro Letters, 2019, 11, 94.	27.0	108
43	High-Performance Quasi-Solid-State MXene-Based Li–I Batteries. ACS Central Science, 2019, 5, 365-373.	11.3	78
44	A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries. Nature Communications, 2019, 10, 602.	12.8	138
45	Effect of glyphosate on X-ray diffraction of copper films prepared by electrochemical deposition. RSC Advances, 2019, 9, 14016-14023.	3.6	15
46	Unlocking Fewâ€Layered Ternary Chalcogenides for Highâ€Performance Potassiumâ€lon Storage. Advanced Energy Materials, 2019, 9, 1901560.	19.5	53
47	Yolk–shell N-doped carbon coated FeS ₂ nanocages as a high-performance anode for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 14051-14059.	10.3	84
48	1,2-dithioglycol functionalised carbon nitride quantum dots as a "turn – off―fluorescent sensor for mercury ion detection. International Journal of Environmental Analytical Chemistry, 2019, 99, 796-807.	3.3	4
49	Nitrogen, phosphorus co-doped mesoporous carbon materials as efficient catalysts for oxygen reduction reaction. lonics, 2019, 25, 4295-4303.	2.4	13
50	MXeneâ€Based Composites: Synthesis and Applications in Rechargeable Batteries and Supercapacitors. Advanced Materials Interfaces, 2019, 6, 1802004.	3.7	214
51	Co–Fe Mixed Metal Phosphide Nanocubes with Highly Interconnected-Pore Architecture as an Efficient Polysulfide Mediator for Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 4731-4741.	14.6	212
52	Recent Advances in the Disinfection of Water Using Nanoscale Antimicrobial Materials. Advanced Materials Technologies, 2019, 4, 1800213.	5.8	21
53	Tuning the Coordination Environment in Single-Atom Catalysts to Achieve Highly Efficient Oxygen Reduction Reactions. Journal of the American Chemical Society, 2019, 141, 20118-20126.	13.7	683
54	An electrochemical sensor on the hierarchically porous Cu-BTC MOF platform for glyphosate determination. Sensors and Actuators B: Chemical, 2019, 283, 487-494.	7.8	162

#	Article	IF	CITATIONS
55	Toward High Performance Lithium–Sulfur Batteries Based on Li ₂ S Cathodes and Beyond: Status, Challenges, and Perspectives. Advanced Functional Materials, 2018, 28, 1800154.	14.9	107
56	Facile Synthesis of Crumpled Nitrogenâ€Doped MXene Nanosheets as a New Sulfur Host for Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1702485.	19.5	488
57	Solar Cells: Facile Synthesis of Crumpled Nitrogenâ€Doped MXene Nanosheets as a New Sulfur Host for Lithium–Sulfur Batteries (Adv. Energy Mater. 13/2018). Advanced Energy Materials, 2018, 8, 1870060.	19.5	13
58	Microstructure and properties of honeycomb composite films containing Eu and Sn. Rare Metals, 2018, , $1. $	7.1	2
59	Aegis of Lithium-Rich Cathode Materials via Heterostructured LiAlF ₄ Coating for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 33260-33268.	8.0	74
60	Lithiumâ€Sulfur Batteries: Toward High Performance Lithium–Sulfur Batteries Based on Li ₂ S Cathodes and Beyond: Status, Challenges, and Perspectives (Adv. Funct. Mater.) Tj ETQq0 0 0 r	g BT./Ю ver	lo ck 10 Tf 50
61	Label-free Microcantilever Immunosensor Based on a Competitive Immunoassay for the Determination of Clenbuterol. Analytical Letters, 2018, 51, 2240-2251.	1.8	1
62	Stable and Efficient Nitrogenâ€Containing Carbonâ€Based Electrocatalysts for Reactions in Energyâ€Conversion Systems. ChemSusChem, 2018, 11, 2267-2295.	6.8	19
63	Dendriteâ€Free Sodiumâ€Metal Anodes for Highâ€Energy Sodiumâ€Metal Batteries. Advanced Materials, 2018, 30, e1801334.	21.0	267
64	A novel lithium-ion hybrid capacitor based on an aerogel-like MXene wrapped Fe ₂ O ₃ nanosphere anode and a 3D nitrogen sulphur dual-doped porous carbon cathode. Materials Chemistry Frontiers, 2018, 2, 1811-1821.	5.9	65
65	Functional MXene Materials: Progress of Their Applications. Chemistry - an Asian Journal, 2018, 13, 2742-2757.	3.3	162
66	Highly sensitive microcantilever-based immunosensor for the detection of carbofuran in soil and vegetable samples. Food Chemistry, 2017, 229, 432-438.	8.2	23
67	Multifunctional Freeâ€Standing Gel Polymer Electrolyte with Carbon Nanofiber Interlayers for Highâ€Performance Lithium–Sulfur Batteries. Chemistry - an Asian Journal, 2017, 12, 1470-1474.	3.3	35
68	Sb ₂ O ₃ /MXene(Ti ₃ C ₂ T _x) hybrid anode materials with enhanced performance for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 12445-12452.	10.3	245
69	Nitrogenâ€Doped Porous Carbon Nanosheets from Ecoâ€Friendly Eucalyptus Leaves as High Performance Electrode Materials for Supercapacitors and Lithium Ion Batteries. Chemistry - A European Journal, 2017, 23, 3683-3690.	3.3	132
70	Advances in human chorionic gonadotropin detection technologies: a review. Bioanalysis, 2017, 9, 1509-1529.	1.5	30
71	Construction of a non-enzymatic sensor based on the poly(o-phenylenediamine)/Ag-NPs composites for detecting glucose in blood. Materials Science and Engineering C, 2017, 71, 844-851.	7.3	32
72	Development of a Disposable Label-Free Impedance Immunosensor for Direct and Sensitive Clenbuterol Determination in Pork. Food Analytical Methods, 2016, 9, 1781-1788.	2.6	3

#	Article	IF	CITATIONS
73	Metal/Graphitic Carbon Nitride Composites: Synthesis, Structures, and Applications. Chemistry - an Asian Journal, 2016, 11, 3305-3328.	3.3	102
74	Electrospun cobalt embedded porous nitrogen doped carbon nanofibers as an efficient catalyst for water splitting. Journal of Materials Chemistry A, 2016, 4, 12818-12824.	10.3	87
75	3D Networked Tin Oxide/Graphene Aerogel with a Hierarchically Porous Architecture for Highâ€Rate Performance Sodiumâ€lon Batteries. ChemSusChem, 2015, 8, 2948-2955.	6.8	70
76	Relationship between Pyrite in the Precursor and the Pore Structure of Highâ€6urface Area Activated Carbon Preparations. Chemical Engineering and Technology, 2015, 38, 85-90.	1.5	2
77	Construction of a non-enzymatic glucose sensor based on copper nanoparticles/poly(o-phenylenediamine) nanocomposites. Journal of Solid State Electrochemistry, 2015, 19, 731-738.	2.5	27
78	Glucose Sensors Based on Core@Shell Magnetic Nanomaterials and Their Application in Diabetes Management: A Review. Current Pharmaceutical Design, 2015, 21, 5359-5368.	1.9	9
79	Effect of Organic Sulfide in Precursors on the Pore Structure of Highâ€Surface Area Activated Carbons. Chemical Engineering and Technology, 2014, 37, 325-331.	1.5	5
80	Label-free microcantilever-based immunosensors for highly sensitive determination of avian influenza virus H9. Mikrochimica Acta, 2014, 181, 403-410.	5.0	12
81	Construction of a non-enzymatic glucose sensor based on copolymer P4VP-co-PAN and Fe2O3 nanoparticles. Materials Science and Engineering C, 2014, 35, 420-425.	7.3	28
82	Effects of sodium dodecyl sulfate on the electrochemical behavior of supercapacitor electrode MnO2. Journal of Solid State Electrochemistry, 2014, 18, 235-247.	2.5	17
83	DETERMINATION OF PROLINE, HYDROXYPROLINE, AND N–ETHYLGLYCINE IN URINE BY USING A NEW HPLC LABELING REAGENT, AND ITS APPLICATION IN DETECTION OF TUMOR MARKERS. Journal of Liquid Chromatography and Related Technologies, 2014, 37, 1731-1749.	1.0	3
84	Effect of Pyrite in Precursor on Capacitance Behavior of Prepared Activated Carbon. Industrial & Engineering Chemistry Research, 2014, 53, 10125-10132.	3.7	8
85	Novel cysteic acid/reduced graphene oxide composite film modified electrode for the selective detection of trace silver ions in natural waters. Analytical Methods, 2013, 5, 5812.	2.7	19
86	Effect of Organic Sulfur Compounds in the Precursor on the Capacitance Performance of Prepared Activated Carbon. Industrial & Engineering Chemistry Research, 2013, 52, 15801-15807.	3.7	5
87	Determination of glyphosate and aminomethylphosphonic acid in soybean samples by high performance liquid chromatography using a novel fluorescent labeling reagent. Analytical Methods, 2013, 5, 6465.	2.7	24
88	Determination of alkylamine carbonate nonionic–anion oil displacement agent in oil-field water using HPLC after derivatization with 4-methoxybenzenesulfonyl fluoride. Analytical Methods, 2013, 5, 729-734.	2.7	3
89	Fabrication of Large-area 3-D Ordered Silver-coated Colloidal Crystals and Macroporous Silver Films Using Polystyrene Templates. Nano-Micro Letters, 2013, 5, 182-190.	27.0	11
90	Facile Synthesis of Mono-Dispersed Polystyrene (PS)/Ag Composite Microspheres via Modified Chemical Reduction. Materials, 2013, 6, 5625-5638.	2.9	33

#	Article	IF	CITATIONS
91	Fabrication of Large-area 3-D Ordered Silver-coated Colloidal Crystals and Macroporous Silver Films Using Polystyrene Templates. Nano-Micro Letters, 2013, 5, 182.	27.0	1
92	Solvothermal synthesis of CoS2–graphene nanocomposite material for high-performance supercapacitors. Journal of Materials Chemistry, 2012, 22, 15750.	6.7	205
93	Interface interaction within nanopores in thin films of an amphiphilic block copolymer and CTAB. Journal of Colloid and Interface Science, 2011, 354, 219-225.	9.4	5
94	Determination of Glyphosate and Aminomethylphosphonic Acid in Water by LC Using a New Labeling Reagent, 4-Methoxybenzenesulfonyl Fluoride. Chromatographia, 2010, 72, 679-686.	1.3	32
95	Novel reagents for quantitative analysis of valiolamine in biological samples by high-performance liquid chromatography with pre-column UV derivatization. Talanta, 2010, 81, 1613-1618.	5.5	6
96	Voltammetric determination of terbinafine in biological fluid at glassy carbon electrode modified by cysteic acid/carbon nanotubes composite film. Bioelectrochemistry, 2008, 72, 107-115.	4.6	24
97	Electrochemical behavior of lead(II) at poly(phenol red) modified glassy carbon electrode, and its trace determination by differential pulse anodic stripping voltammetry. Mikrochimica Acta, 2008, 160, 275-281.	5.0	33
98	Fabrication of highly ordered microporous thin films by PS-b-PAA self-assembly and investigation of their tunable surface properties. Journal of Materials Chemistry, 2008, 18, 683.	6.7	103
99	Voltammetric Determination of Sinomenine in Biological Fluid Using a Glassy Carbon Electrode Modified by a Composite Film of Polycysteic Acid and Carbon Nanotubes. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 595-603.	1.1	6
100	Electrochemical Detection Coupled with High-Performance Liquid Chromatography in Pharmaceutical and Biomedical Analysis: A Mini Review. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 547-554.	1.1	20
101	One step fabrication of nanoelectrode ensembles formed via amphiphilic block copolymers self-assembly and selective voltammetric detection of uric acid in the presence of high ascorbic acid content. Talanta, 2007, 71, 178-185.	5.5	33
102	Voltammetric Determination of Dopamine in Human Serum and Urine at a Glassy Carbon Electrode Modified by Cysteic Acid Based on Electrochemical Oxidation ofL ysteine. Analytical Letters, 2007, 40, 689-704.	1.8	11
103	Ultrasensitive biochemical sensors based on microcantilevers of atomic force microscope. Analytical Biochemistry, 2007, 363, 1-11.	2.4	25
104	Fabrication of nanometre-sized platinum electrodes by controllable electrochemical deposition. Talanta, 2006, 68, 1322-1328.	5 . 5	22
105	Determination of Benzoyl Peroxide Levels in Wheat Flour and Pharmaceutical Preparations by Differential Pulse Voltammetry in Nonaqueous Media. Analytical Letters, 2005, 38, 2175-2187.	1.8	13
106	Differential Pulse Voltammetry for Determination of Benorilate in Pharmaceutical Formulations at Carbon Paste Electrode. Analytical Letters, 2005, 38, 893-905.	1.8	9
107	Nanomolar Detection of Amitriptyline by Potentiometry with Ion Exchanger Based PVC Membrane ISEs. Electroanalysis, 2003, 15, 709-714.	2.9	6
108	DIFFERENTIAL PULSE VOLTAMMETRY FOR DETERMINATION OF PARACETAMOL AT A PUMICE MIXED CARBON PASTE ELECTRODE. Analytical Letters, 2001, 34, 2747-2759.	1.8	23