Sarah M Farris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8763818/publications.pdf

Version: 2024-02-01

28 papers 2,347 citations

257101 24 h-index 28 g-index

28 all docs

28 docs citations

28 times ranked

1586 citing authors

#	Article	IF	CITATIONS
1	Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature, 2000, 403, 537-540.	13.7	289
2	Experience- and Age-Related Outgrowth of Intrinsic Neurons in the Mushroom Bodies of the Adult Worker Honeybee. Journal of Neuroscience, 2001, 21, 6395-6404.	1.7	268
3	Ground plan of the insect mushroom body: Functional and evolutionary implications. Journal of Comparative Neurology, 2009, 513, 265-291.	0.9	200
4	Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 940-951.	1,2	132
5	Coevolution of generalist feeding ecologies and gyrencephalic mushroom bodies in insects. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17394-17399.	3.3	129
6	Experience-Expectant Plasticity in the Mushroom Bodies of the Honeybee. Learning and Memory, $1998, 5, 115-123$.	0.5	124
7	Evolution of insect mushroom bodies: old clues, new insights. Arthropod Structure and Development, 2005, 34, 211-234.	0.8	122
8	Development and evolution of the insect mushroom bodies: towards the understanding of conserved developmental mechanisms in a higher brain center. Arthropod Structure and Development, 2003, 32, 79-101.	0.8	101
9	Miniaturization of Nervous Systems and Neurons. Current Biology, 2012, 22, R323-R329.	1.8	88
10	Are mushroom bodies cerebellum-like structures?. Arthropod Structure and Development, 2011, 40, 368-379.	0.8	87
11	Evolution of Complex Higher Brain Centers and Behaviors: Behavioral Correlates of Mushroom Body Elaboration in Insects. Brain, Behavior and Evolution, 2013, 82, 9-18.	0.9	77
12	Limits on volume changes in the mushroom bodies of the honey bee brain. Journal of Neurobiology, 2003, 57, 141-151.	3.7	69
13	Taurine-, aspartate- and glutamate-like immunoreactivity identifies chemically distinct subdivisions of Kenyon cells in the cockroach mushroom body. Journal of Comparative Neurology, 2001, 439, 352-367.	0.9	68
14	Development of laminar organization in the mushroom bodies of the cockroach: Kenyon cell proliferation, outgrowth, and maturation. Journal of Comparative Neurology, 2001, 439, 331-351.	0.9	62
15	Development and morphology of Class II Kenyon cells in the mushroom bodies of the honey bee, Apis mellifera. Journal of Comparative Neurology, 2004, 474, 325-339.	0.9	60
16	A unique mushroom body substructure common to basal cockroaches and to termites. Journal of Comparative Neurology, 2003, 456, 305-320.	0.9	56
17	Expansion of the neuropil of the mushroom bodies in male honey bees is coincident with initiation of flight. Neuroscience Letters, 1997, 236, 135-138.	1.0	52
18	Insect societies and the social brain. Current Opinion in Insect Science, 2016, 15, 1-8.	2.2	52

#	Article	IF	CITATIONS
19	Structural, Functional and Developmental Convergence of the Insect Mushroom Bodies with Higher Brain Centers of Vertebrates. Brain, Behavior and Evolution, 2008, 72, 1-15.	0.9	51
20	Tritocerebral tract input to the insect mushroom bodies. Arthropod Structure and Development, 2008, 37, 492-503.	0.8	49
21	Developmental organization of the mushroom bodies of Thermobia domestica (Zygentoma,) Tj ETQq1 1 0.78431 2005, 7, 150-159.	.4 rgBT 1.1	/Overlock 10 Ti 44
22	Evolutionary Convergence of Higher Brain Centers Spanning the Protostome-Deuterostome Boundary. Brain, Behavior and Evolution, 2008, 72, 106-122.	0.9	44
23	Metamorphosis and adult development of the mushroom bodies of the red flour beetle, <i>Tribolium castaneum</i> . Developmental Neurobiology, 2008, 68, 1487-1502.	1.5	39
24	Evolution of brain elaboration. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150054.	1.8	33
25	Evolution and function of the insect mushroom bodies: contributions from comparative and model systems studies. Current Opinion in Insect Science, 2015, 12, 19-25.	2.2	27
26	The rise to dominance of genetic model organisms and the decline of curiosity-driven organismal research. PLoS ONE, 2020, 15, e0243088.	1.1	13
27	A subpopulation of mushroom body intrinsic neurons is generated by protocerebral neuroblasts in the tobacco hornworm moth, Manduca sexta (Sphingidae, Lepidoptera). Arthropod Structure and Development, 2011, 40, 395-408.	0.8	8
28	Locusts Provide Clues to Insect Mushroom Body Function. Brain, Behavior and Evolution, 2011, 77, 3-4.	0.9	3