
Patrice Estellé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8763184/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical simulation of three-dimensional thermo-solutal convection of micropolar multi-walled carbon nanotubes water nanofluid stabilized by lignin and sodium polycarboxylate. Journal of Thermal Analysis and Calorimetry, 2022, 147, 2985-3005.	3.6	2
2	Experimental investigation on thermal performance of covalently functionalized hydroxylated and non-covalently functionalized multi-walled carbon nanotubes/transformer oil nanofluid. Case Studies in Thermal Engineering, 2022, 31, 101713.	5.7	24
3	Tailoring stability and thermophysical properties of CuO nanofluid through ultrasonication. Journal of Thermal Analysis and Calorimetry, 2022, 147, 10319-10328.	3.6	7
4	Numerical investigation of TiO2 and MWCNTs turbine meter oil nanofluids: Flow and hydrodynamic properties. Fuel, 2022, 320, 123943.	6.4	32
5	The developing flow characteristics of water - ethylene glycol mixture based Fe3O4 nanofluids in eccentric annular ducts in low temperature applications. International Journal of Thermofluids, 2022, 14, 100149.	7.8	15
6	Advances in rheological behavior of nanofluids and ionanofluids – An editorial note. Journal of Molecular Liquids, 2022, 362, 119669.	4.9	5
7	Dynamic Viscosity of Purified Multi-Walled Carbon Nanotubes Water and Water-Propylene Glycol-Based Nanofluids. Heat Transfer Engineering, 2021, 42, 1663-1674.	1.9	5
8	Deep eutectic solvents (DESs): A short overview of the thermophysical properties and current use as base fluid for heat transfer nanofluids. Journal of Molecular Liquids, 2021, 321, 114752.	4.9	40
9	Nanofluid-Cooled Microchannel Heat Sink with Carbon Nanotube. Evergreen, 2021, 8, 170-176.	0.5	2
10	Optical and Transport Properties of Metal–Oil Nanofluids for Thermal Solar Industry: Experimental Characterization, Performance Assessment, and Molecular Dynamics Insights. ACS Sustainable Chemistry and Engineering, 2021, 9, 4194-4205.	6.7	10
11	Graphene-based nanofluids: A comprehensive review about rheological behavior and dynamic viscosity. Journal of Molecular Liquids, 2021, 325, 115207.	4.9	60
12	Thermophysical profile of ethylene glycol based nanofluids containing two types of carbon black nanoparticles with different specific surface areas. Journal of Molecular Liquids, 2021, 326, 115255.	4.9	36
13	Rheological behavior of stabilized diamond-graphene nanoplatelets hybrid nanosuspensions in mineral oil. Journal of Molecular Liquids, 2021, 328, 115509.	4.9	20
14	Experimental investigation of the usability of the rifled serpentine tube to improve energy and exergy performances of a nanofluid-based photovoltaic/thermal system. Renewable Energy, 2021, 170, 410-425.	8.9	48
15	Viscosity, tribological and physicochemical features of ZnO and MoS2 diesel oil-based nanofluids: An experimental study. Fuel, 2021, 293, 120481.	6.4	83
16	Heat transfer properties of metal, metal oxides, and carbon water-based nanofluids in the ethanol condensation process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622, 126720.	4.7	34
17	A critical review on thermal conductivity enhancement of graphene-based nanofluids. Advances in Colloid and Interface Science, 2021, 294, 102452.	14.7	62
18	Effects of surfactant and nanofluid on the performance and optimization of a microchannel heat sink. International Journal of Heat and Mass Transfer, 2021, 175, 121336.	4.8	27

#	Article	IF	CITATIONS
19	The effect of boiling in a thermosyphon on surface tension and contact angle of silica and graphene oxide nanofluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127082.	4.7	19
20	Heat transfer of water-based carbon nanotube nanofluids in the shell and tube cooling heat exchangers of the gasoline product of the residue fluid catalytic cracking unit. Journal of Thermal Analysis and Calorimetry, 2020, 140, 351-362.	3.6	56
21	Surface tension of ethylene glycol-based nanofluids containing various types of nitrides. Journal of Thermal Analysis and Calorimetry, 2020, 139, 799-806.	3.6	36
22	Boron nitride nanotubes-based nanofluids with enhanced thermal properties for use as heat transfer fluids in solar thermal applications. Solar Energy Materials and Solar Cells, 2020, 205, 110266.	6.2	51
23	NePCM Based on Silver Dispersions in Poly(Ethylene Glycol) as a Stable Solution for Thermal Storage. Nanomaterials, 2020, 10, 19.	4.1	29
24	Shear flow behavior and dynamic viscosity of few-layer graphene nanofluids based on propylene glycol-water mixture. Journal of Molecular Liquids, 2020, 316, 113875.	4.9	19
25	Ethylene glycol based silver nanoparticles synthesized by polyol process: Characterization and thermophysical profile. Journal of Molecular Liquids, 2020, 310, 113229.	4.9	35
26	Thermal and Physical Characterization of PEG Phase Change Materials Enhanced by Carbon-Based Nanoparticles. Nanomaterials, 2020, 10, 1168.	4.1	40
27	Special Issue of the 1st International Conference on Nanofluids (ICNf19). Energies, 2020, 13, 2290.	3.1	2
28	Carbon Nanomaterial-Based Nanofluids for Direct Thermal Solar Absorption. Nanomaterials, 2020, 10, 1199.	4.1	38
29	Few-Layer Graphene-Based Nanofluids with Enhanced Thermal Conductivity. Nanomaterials, 2020, 10, 1258.	4.1	29
30	Volumetric Properties and Surface Tension of Few-Layer Graphene Nanofluids Based on a Commercial Heat Transfer Fluid. Energies, 2020, 13, 3462.	3.1	4
31	Thermophysical properties of water ethylene glycol (WEG) mixture-based Fe3O4 nanofluids at low concentration and temperature. Journal of Molecular Liquids, 2020, 302, 112606.	4.9	41
32	Novel WS ₂ -Based Nanofluids for Concentrating Solar Power: Performance Characterization and Molecular-Level Insights. ACS Applied Materials & Interfaces, 2020, 12, 5793-5804.	8.0	22
33	Experimental comparison between ZnO and MoS2 nanoparticles as additives on performance of diesel oil-based nano lubricant. Scientific Reports, 2020, 10, 5813.	3.3	143
34	Surface tension of functionalized MWCNT-based nanofluids in water and commercial propylene-glycol mixture. Journal of Molecular Liquids, 2019, 293, 111473.	4.9	28
35	Dynamic Viscosity, Surface Tension and Wetting Behavior Studies of Paraffin–in–Water Nano–Emulsions. Energies, 2019, 12, 3334.	3.1	24
36	Thermal and hydrodynamic performance of a microchannel heat sink with carbon nanotube nanofluids. Journal of Thermal Analysis and Calorimetry, 2019, 138, 937-945.	3.6	23

#	Article	IF	CITATIONS
37	Recent advances in preparation methods and thermophysical properties of oil-based nanofluids: A state-of-the-art review. Powder Technology, 2019, 352, 209-226.	4.2	163
38	The contact angle of nanofluids as thermophysical property. Journal of Colloid and Interface Science, 2019, 547, 393-406.	9.4	44
39	Prediction of Contact Angle of Nanofluids by Single-Phase Approaches. Energies, 2019, 12, 4558.	3.1	8
40	Experimental analysis of water-based nanofluids using boron nitride nanotubes with improved thermal properties. Journal of Molecular Liquids, 2019, 277, 93-103.	4.9	42
41	Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory. Physics Reports, 2019, 790, 1-48.	25.6	670
42	Recent advances in modeling and simulation of nanofluid flows—Part II: Applications. Physics Reports, 2019, 791, 1-59.	25.6	389
43	Design of a Solar AC System Including a PCM Storage for Sustainable Resorts in Tropical Region. Evergreen, 2019, 6, 143-148.	0.5	7
44	Numerical study on CNT nanofluids behavior in laminar pipe flow. Journal of Molecular Liquids, 2018, 271, 281-289.	4.9	37
45	Viscosity of Ar-Cu nanofluids by molecular dynamics simulations: Effects of nanoparticle content, temperature and potential interaction. Journal of Molecular Liquids, 2018, 268, 490-496.	4.9	46
46	Current trends in surface tension and wetting behavior of nanofluids. Renewable and Sustainable Energy Reviews, 2018, 94, 931-944.	16.4	125
47	Dynamic Viscosity and Surface Tension of Stable Graphene Oxide and Reduced Graphene Oxide Aqueous Nanofluids. Journal of Nanofluids, 2018, 7, 1081-1088.	2.7	53
48	Natural convection of CNT water-based nanofluids in a differentially heated square cavity. Journal of Thermal Analysis and Calorimetry, 2017, 128, 1765-1770.	3.6	61
49	The influence of ash content on thermophysical properties of ethylene glycol based graphite/diamonds mixture nanofluids. Diamond and Related Materials, 2017, 74, 81-89.	3.9	45
50	Thermophysical and dielectric profiles of ethylene glycol based titanium nitride (TiN–EG) nanofluids with various size of particles. International Journal of Heat and Mass Transfer, 2017, 113, 1189-1199.	4.8	72
51	A state of the art review on viscosity of nanofluids. Renewable and Sustainable Energy Reviews, 2017, 76, 1134-1152.	16.4	331
52	Multi-objective optimization of thermophysical properties of eco-friendly organic nanofluids. Journal of Cleaner Production, 2017, 166, 350-359.	9.3	65
53	Thermophysical properties and heat transfer performance of carbon nanotubes water-based nanofluids. Journal of Thermal Analysis and Calorimetry, 2017, 127, 2075-2081.	3.6	45
54	Measurement of Similarity in Academic Contexts. Publications, 2017, 5, 18.	3.8	5

#	Article	IF	CITATIONS
55	Stability and Viscosity of CuO Water Nanofluids at Very High Shear Rate. Journal of Nanofluids, 2017, 6, 213-219.	2.7	2
56	Graphene for Water-Based Nanofluid Preparation: Effect of Chemical Modifications on Dispersion and Stability. Journal of Nanofluids, 2017, 6, 603-613.	2.7	7
57	Long-term Stability of Graphene Based Nanofluids. International Journal of Mechanical Engineering and Robotics Research, 2017, 6, 529-533.	1.0	1
58	THERMAL AND HYDRODYNAMIC PERFORMANCE OF A MICROCHANNEL HEAT SINK COOLED WITH CARBON NANOTUBES NANOFLUID. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	1
59	CONSIDERATION OF CARBON NANOTUBE-BASED NANOFLUID IN THERMAL TRANSFER Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	1
60	Comment on "Performance of CNT-water nanofluid as coolant fluid in shell and tube intercooler of a LPG absorber tower― International Journal of Heat and Mass Transfer, 2016, 103, 1378-1379.	4.8	2
61	Thermal Performance of Carbon Nanotube Nanofluids in Solar Microchannel Collectors: an Experimental Study. International Journal of Technology, 2016, 7, 219.	0.8	13
62	Unexpected sharp peak in thermal conductivity of carbon nanotubes water-based nanofluids. International Communications in Heat and Mass Transfer, 2015, 66, 80-83.	5.6	30
63	Rheological properties of calcium sulfate suspensions. Cement and Concrete Research, 2015, 76, 70-81.	11.0	13
64	Comment on "viscosity measurements of multi-walled carbon nanotubes-based high temperature nanofluids― Materials Letters, 2015, 138, 162-163.	2.6	17
65	A brief review of natural convection in enclosures under localized heating with and without nanofluids. International Communications in Heat and Mass Transfer, 2015, 60, 37-44.	5.6	167
66	Rheological Behavior of Zinc-Oxide Nanolubricants. Journal of Dispersion Science and Technology, 2015, 36, 1073-1079.	2.4	46
67	Determination of the consolidation coefficient of low compressibility materials: application to fresh cement-based materials. Materials and Structures/Materiaux Et Constructions, 2015, 48, 1475-1483.	3.1	11
68	Thermal conductivity of CNT water based nanofluids: Experimental trends and models overview. Journal of Thermal Engineering, 2015, 1, 381.	1.6	76
69	Optimization of thermal performances and pressure drop of rectangular microchannel heat sink using aqueous carbon nanotubes based nanofluid. Applied Thermal Engineering, 2014, 62, 492-499.	6.0	114
70	Heat transfer properties of aqueous carbon nanotubes nanofluids in coaxial heat exchanger under laminar regime. Experimental Thermal and Fluid Science, 2014, 55, 174-180.	2.7	52
71	Efficiency of carbon nanotubes water based nanofluids as coolants. Experimental Thermal and Fluid Science, 2014, 53, 104-110.	2.7	189
72	Lignin as dispersant for water-based carbon nanotubes nanofluids: Impact on viscosity and thermal conductivity. International Communications in Heat and Mass Transfer, 2014, 57, 8-12.	5.6	51

#	Article	IF	CITATIONS
73	Experimental Investigation of Rheological Behavior and Pressure Drop of Aqueous Suspensions of Carbon Nanotubes in a Horizontal Tube. Procedia Engineering, 2013, 56, 344-349.	1.2	3
74	Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature. International Journal of Thermal Sciences, 2013, 71, 111-117.	4.9	235
75	Structural build-up of rigid fiber reinforced cement-based materials. Materials and Structures/Materiaux Et Constructions, 2013, 46, 1561-1568.	3.1	56
76	Shear History Effect on the Viscosity of Carbon Nanotubes Water-based Nanofluid. Current Nanoscience, 2013, 9, 225-230.	1.2	40
77	Use of ram extruder as a combined rheo-tribometer to study the behaviour of high yield stress fluids at low strain rate. Rheologica Acta, 2012, 51, 743-754.	2.4	69
78	Experimental investigations of the viscosity of nanofluids at low temperatures. Applied Energy, 2012, 97, 876-880.	10.1	174
79	Comparison of the thermal performances of two nanofluids at low temperature in a plate heat exchanger. Experimental Thermal and Fluid Science, 2011, 35, 1535-1543.	2.7	162
80	Vibro-extrusion: a new forming process for cement-based materials. Advances in Cement Research, 2009, 21, 125-133.	1.6	18
81	Vers une réelle rhéométrie adaptée aux bétons frais. European Journal of Environmental and Civil Engineering, 2009, 13, 457-471.	2.1	7
82	Energy distribution in the squeezing of particles in concentrated suspension. Granular Matter, 2008, 10, 81-87.	2.2	1
83	Processing the Couette viscometry data using a Bingham approximation in shear rate calculation. Journal of Non-Newtonian Fluid Mechanics, 2008, 154, 31-38.	2.4	71
84	Shear flow curve in mixing systems—A simplified approach. Chemical Engineering Science, 2008, 63, 5887-5890.	3.8	17
85	Extrusion Criterion for Firm Cement-Based Materials. AIP Conference Proceedings, 2008, , .	0.4	2
86	Couette Rheometry from Differential Approach: Comparative Study and Experimental Application. AIP Conference Proceedings, 2008, , .	0.4	1
87	Multi-Scale Analysis to Study the Rheological Behavior of Natural Mud Suspensions. AIP Conference Proceedings, 2008, , .	0.4	0
88	Squeezing Flow of Suspensions: Flow Regime Evaluation from Energy Approach. AIP Conference Proceedings, 2008, , .	0.4	0
89	Processing the Vane Shear Flow Data from Couette Analogy. Applied Rheology, 2008, 18, 34037-1-34037-6.	5.2	36
90	Mortar physical properties evolution in extrusion flow. Rheologica Acta, 2007, 46, 1065-1073.	2.4	45

6

#	Article	IF	CITATIONS
91	Slipping zone location in squeeze flow. Rheologica Acta, 2006, 45, 444-448.	2.4	25
92	Ram extrusion force for a frictional plastic material: model prediction and application to cement paste. Rheologica Acta, 2006, 45, 457-467.	2.4	46
93	Squeeze flow of Bingham fluids under slip with friction boundary condition. Rheologica Acta, 2006, 46, 397-404.	2.4	18
94	On the optimisation of a texture analyser in squeeze flow geometry. Measurement: Journal of the International Measurement Confederation, 2006, 39, 771-777.	5.0	8
95	Nanofluid in Thermal Transfer - Is it a Solution for the Future?. Applied Mechanics and Materials, 0, 819, 11-15.	0.2	Ο
96	Three-dimensional analysis of combined thermal–solutal buoyancy and capillary convection of water-based micropolar multi-walled carbon nanotubes nanofluids. Journal of Thermal Analysis and Calorimetry, 0, , .	3.6	0