Ludovico Danza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8762998/publications.pdf

Version: 2024-02-01

44 papers

1,023 citations

16 h-index 414034 32 g-index

44 all docs

44 docs citations

times ranked

44

1098 citing authors

#	Article	IF	CITATIONS
1	Weather-induced variability of country-scale space heating demand under different refurbishment scenarios for residential buildings. Energy, 2022, 239, 122152.	4.5	8
2	An artificial skylight compared with daylighting and LED: Subjective and objective performance measures. Journal of Building Engineering, 2022, 45, 103407.	1.6	3
3	Low-Cost Thermohygrometers to Assess Thermal Comfort in the Built Environment: A Laboratory Evaluation of Their Measurement Performance. Buildings, 2022, 12, 579.	1.4	6
4	Assessment of Indoor Environmental Quality in schools by combining survey and modelling: a case study in Albania. E3S Web of Conferences, 2021, 312, 12002.	0.2	0
5	Achieving near Zero Energy Building in Albania: An Approach for the Retrofit of a Public-School Building. E3S Web of Conferences, 2021, 312, 02005.	0.2	O
6	A survey-based approach used to analyse the indoor satisfaction and productivity level of user in smart working during lock-down due to the COVID-19 pandemic. Journal of Physics: Conference Series, 2021, 2042, 012139.	0.3	2
7	Working from Home in Italy during COVID-19 Lockdown: A Survey to Assess the Indoor Environmental Quality and Productivity. Buildings, 2021, 11 , 660 .	1.4	17
8	A weighting procedure to analyse the Indoor Environmental Quality of a Zero-Energy Building. Building and Environment, 2020, 183, 107155.	3.0	23
9	A multiple linear regression approach to correlate the Indoor Environmental Factors to the global comfort in a Zero-Energy building. E3S Web of Conferences, 2020, 197, 04002.	0.2	2
10	Correlation between Indoor Environmental Data and Biometric Parameters for the Impact Assessment of a Living Wall in a ZEB Lab. Sensors, 2020, 20, 2523.	2.1	8
11	Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches. Sensors, 2020, 20, 1627.	2.1	21
12	A Machine Learning approach for personal thermal comfort perception evaluation: experimental campaign under real and virtual scenarios. E3S Web of Conferences, 2020, 197, 04001.	0.2	0
13	The Influence of Technology Performance Durability in the Cost-Optimal Analysis of a ZEB. IOP Conference Series: Earth and Environmental Science, 2019, 290, 012041.	0.2	1
14	I-ZEB: Design and Development of a ZEB Test-Laboratory for an Integrated Evaluation of Building Technologies. IOP Conference Series: Earth and Environmental Science, 2019, 290, 012092.	0.2	0
15	A review of performance of zero energy buildings and energy efficiency solutions. Journal of Building Engineering, 2019, 25, 100772.	1.6	204
16	Design and testing of I-ZEB, a zero energy laboratory for the integrated evaluation of the performance of building components and HVAC systems. IOP Conference Series: Materials Science and Engineering, 2019, 609, 062020.	0.3	0
17	Application of IoT and Machine Learning techniques for the assessment of thermal comfort perception Energy Procedia, 2018, 148, 798-805.	1.8	25
18	Durability of technologies in the keeping of ZEB's performances. Energy Procedia, 2018, 148, 138-145.	1.8	7

#	Article	IF	Citations
19	How to Define the Urban Comfort in the Era of Smart Cities through the Use of the Do-It-Yourself Approach and New Pervasive Technologies. Proceedings (mdpi), 2018, 2, 115.	0.2	O
20	Integrated Method for Personal Thermal Comfort Assessment and Optimization through Users' Feedback, IoT and Machine Learning: A Case Study â€. Sensors, 2018, 18, 1602.	2.1	71
21	Analysis and definition of a ZEB building at optimum level of efficiency and costs. Modelling, Measurement and Control C: Energetics, Chemistry, Earth, Environmental and Biomedical Problems, 2018, 79, 119-126.	0.1	1
22	Application of model predictive control for the optimization of thermo-hygrometric comfort and energy consumption of buildings. Instrumentation Mesure Metrologie, 2018, 18, 375-391.	0.2	3
23	Simplified tool for the energy performance assessment of residential buildings. Modelling, Measurement and Control B: Solid and Fluid Mechanics and Thermics, Mechanical Systems, 2018, 87, 122-128.	0.4	0
24	Nano-PCMs for enhanced energy storage and passive cooling applications. Applied Thermal Engineering, 2017, 110, 584-589.	3.0	199
25	Estimation of building energy performance for local energy policy at urban scale. Energy Procedia, 2017, 122, 98-103.	1.8	15
26	Integrated smart system for energy audit: methodology and application. Energy Procedia, 2017, 140, 231-239.	1.8	11
27	How to control the Indoor Environmental Quality through the use of the Do-It-Yourself approach and new pervasive technologies. Energy Procedia, 2017, 140, 351-360.	1.8	13
28	A Low-Cost Environmental Monitoring System: How to Prevent Systematic Errors in the Design Phase through the Combined Use of Additive Manufacturing and Thermographic Techniques. Sensors, 2017, 17, 828.	2.1	37
29	Design and Development of a Nearable Wireless System to Control Indoor Air Quality and Indoor Lighting Quality. Sensors, 2017, 17, 1021.	2.1	66
30	A Low-Cost Environmental Monitoring System: How to Prevent Systematic Errors in the Design Phase through the Combined Use of Additive Manufacturing and Thermographic Techniques. Proceedings (mdpi), 2017, 1, 18.	0.2	1
31	An Integrated Framework for Users' Well-Being. Proceedings (mdpi), 2017, 2, .	0.2	2
32	Hourly Calculation Method of Air Source Heat Pump Behavior. Buildings, 2016, 6, 16.	1.4	19
33	Assessment of the Performance of a Ventilated Window Coupled with a Heat Recovery Unit through the Co-Heating Test. Buildings, 2016, 6, 3.	1.4	11
34	An Open Source "Smart Lamp―for the Optimization of Plant Systems and Thermal Comfort of Offices. Sensors, 2016, 16, 338.	2.1	30
35	A Simplified Thermal Model to Control the Energy Fluxes and to Improve the Performance of Buildings. Energy Procedia, 2016, 101, 97-104.	1.8	30
36	Integration of a do it yourself Hardware in a Lighting Device for the Management of Thermal Comfort and Energy Use. Energy Procedia, 2016, 101, 161-168.	1.8	10

#	Article	IF	CITATIONS
37	Energy performance assessment with empirical methods: application of energy signature. Opto-electronics Review, 2015, 23, .	2.4	19
38	An Open Source Low-Cost Wireless Control System for a Forced Circulation Solar Plant. Sensors, 2015, 15, 27990-28004.	2.1	19
39	Design and Development of nEMoS, an All-in-One, Low-Cost, Web-Connected and 3D-Printed Device for Environmental Analysis. Sensors, 2015, 15, 13012-13027.	2.1	53
40	A Semantic Framework for Sustainable Factories. Procedia CIRP, 2014, 17, 547-552.	1.0	15
41	Method for the prediction of malfunctions of buildings through real energy consumption analysis: Holistic and multidisciplinary approach of Energy Signature. Energy and Buildings, 2012, 55, 715-720.	3.1	43
42	Energy efficiency of a dynamic glazing system. Solar Energy, 2010, 84, 526-537.	2.9	26
43	Energy and environmental analysis of urban environment: methodology and application of an integrated approach. IOP Conference Series: Materials Science and Engineering, 0, 609, 072018.	0.3	2
44	An Integrated Tool For The Energy And Seismic Diagnosis And Refurbishment Of Buildings At Urban Scale. , 0, , .		O