
Yuehui He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8762543/publications.pdf Version: 2024-02-01

Упенш Не

#	Article	IF	CITATIONS
1	The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes and Development, 2006, 20, 898-912.	2.7	744
2	Evidence Supporting a Role of Jasmonic Acid in Arabidopsis Leaf Senescence. Plant Physiology, 2002, 128, 876-884.	2.3	631
3	Regulation of Flowering Time by Histone Acetylation in Arabidopsis. Science, 2003, 302, 1751-1754.	6.0	459
4	Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10102-10107.	3.3	316
5	Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nature Genetics, 2006, 38, 706-710.	9.4	309
6	PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis. Genes and Development, 2004, 18, 2774-2784.	2.7	302
7	Role of chromatin modification in flowering-time control. Trends in Plant Science, 2005, 10, 30-35.	4.3	281
8	Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb Repressive Complex 2 Components. PLoS ONE, 2008, 3, e3404.	1.1	265
9	<i>Arabidopsis</i> Relatives of the Human Lysine-Specific Demethylase1 Repress the Expression of <i>FWA</i> and <i>FLOWERING LOCUS C</i> and Thus Promote the Floral Transition. Plant Cell, 2007, 19, 2975-2987.	3.1	220
10	Networking Senescence-Regulating Pathways by Using Arabidopsis Enhancer Trap Lines. Plant Physiology, 2001, 126, 707-716.	2.3	213
11	A Gene Encoding an Acyl Hydrolase Is Involved in Leaf Senescence in Arabidopsis. Plant Cell, 2002, 14, 805-815.	3.1	207
12	Establishment of the Vernalization-Responsive, Winter-Annual Habit in Arabidopsis Requires a Putative Histone H3 Methyl Transferase[W]. Plant Cell, 2005, 17, 3301-3310.	3.1	203
13	siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in Arabidopsis. Genes and Development, 2004, 18, 2873-2878.	2.7	200
14	Arabidopsis FLC clade members form flowering-repressor complexes coordinating responses to endogenous and environmental cues. Nature Communications, 2013, 4, 1947.	5.8	189
15	A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in Arabidopsis. Nature Genetics, 2016, 48, 1527-1534.	9.4	158
16	Chromatin regulation of flowering. Trends in Plant Science, 2012, 17, 556-562.	4.3	154
17	Repression of the floral transition via histone H2B monoubiquitination. Plant Journal, 2009, 57, 522-533.	2.8	152
18	Embryonic epigenetic reprogramming by a pioneer transcription factor in plants. Nature, 2017, 551, 124-128.	13.7	151

Үиениі Не

#	Article	IF	CITATIONS
19	Establishment of the Winter-Annual Growth Habit via <i>FRIGIDA</i> -Mediated Histone Methylation at <i>FLOWERING LOCUS C</i> in <i>Arabidopsis</i> Â. Plant Cell, 2009, 21, 1733-1746.	3.1	150
20	Arabidopsis COMPASS-Like Complexes Mediate Histone H3 Lysine-4 Trimethylation to Control Floral Transition and Plant Development. PLoS Genetics, 2011, 7, e1001330.	1.5	143
21	Evolutionary Conservation of the FLOWERING LOCUS C-Mediated Vernalization Response: Evidence From the Sugar Beet (Beta vulgaris). Genetics, 2007, 176, 295-307.	1.2	142
22	Control of the Transition to Flowering by Chromatin Modifications. Molecular Plant, 2009, 2, 554-564.	3.9	141
23	Epigenetic Environmental Memories in Plants: Establishment, Maintenance, and Reprogramming. Trends in Genetics, 2018, 34, 856-866.	2.9	132
24	Photoperiodic Control of the Floral Transition through a Distinct Polycomb Repressive Complex. Developmental Cell, 2014, 28, 727-736.	3.1	116
25	FRIGIDA establishes a local chromosomal environment for FLOWERING LOCUS C mRNA production. Nature Plants, 2018, 4, 836-846.	4.7	115
26	A plant-specific histone H3 lysine 4 demethylase represses the floral transition in Arabidopsis. Plant Journal, 2010, 62, 663-673.	2.8	106
27	PRC2 recruitment and H3K27me3 deposition at <i>FLC</i> require FCA binding of <i>COOLAIR</i> . Science Advances, 2019, 5, eaau7246.	4.7	106
28	Experiencing winter for spring flowering: A molecular epigenetic perspective on vernalization. Journal of Integrative Plant Biology, 2020, 62, 104-117.	4.1	90
29	Identical promoter elements are involved in regulation of the OPR1 gene by senescence and jasmonic acid in Arabidopsis. , 2001, 47, 595-605.		85
30	Arabidopsis Homologs of Retinoblastoma-Associated Protein 46/48 Associate with a Histone Deacetylase to Act Redundantly in Chromatin Silencing. PLoS Genetics, 2011, 7, e1002366.	1.5	85
31	Polycomb-mediated gene silencing by the BAH–EMF1 complex in plants. Nature Genetics, 2018, 50, 1254-1261.	9.4	79
32	Photoperiodic Regulation of Flowering Time through Periodic Histone Deacetylation of the Florigen Gene FT. PLoS Biology, 2013, 11, e1001649.	2.6	71
33	Bidirectionalization of polar promoters in plants. Nature Biotechnology, 2001, 19, 677-679.	9.4	69
34	Brassinosteroid Signaling Recruits Histone 3 Lysine-27 Demethylation Activity to FLOWERING LOCUS C Chromatin to Inhibit the Floral Transition in Arabidopsis. Molecular Plant, 2018, 11, 1135-1146.	3.9	65
35	A novel zinc-finger protein with a proline-rich domain mediates ABA-regulated seed dormancy in Arabidopsis. Plant Molecular Biology, 2004, 54, 1-9.	2.0	62
36	Embryonic resetting of the parental vernalized state by two B3 domain transcription factors in Arabidopsis. Nature Plants, 2019, 5, 424-435.	4.7	61

Үиениі Не

#	Article	IF	CITATIONS
37	Roles of Brassinosteroids in Plant Reproduction. International Journal of Molecular Sciences, 2020, 21, 872.	1.8	59
38	A Histone H3 Lysine-27 Methyltransferase Complex Represses Lateral Root Formation in Arabidopsis thaliana. Molecular Plant, 2014, 7, 977-988.	3.9	55
39	Ramanome technology platform for label-free screening and sorting of microbial cell factories at single-cell resolution. Biotechnology Advances, 2019, 37, 107388.	6.0	55
40	The <scp>NUCLEAR FACTOR</scp> â€ <scp>CONSTANS</scp> complex antagonizes Polycomb repression to deâ€repress <i><scp>FLOWERING LOCUS</scp> T</i> expression in response to inductive long days in Arabidopsis. Plant Journal, 2018, 95, 17-29.	2.8	51
41	A Matrix Protein Silences Transposons and Repeats through Interaction with Retinoblastoma-Associated Proteins. Current Biology, 2013, 23, 345-350.	1.8	47
42	Structural insights into the multivalent binding of the Arabidopsis <i>FLOWERING LOCUS T</i> promoter by the CO–NF–Y master transcription factor complex. Plant Cell, 2021, 33, 1182-1195.	3.1	47
43	Label-free, simultaneous quantification of starch, protein and triacylglycerol in single microalgal cells. Biotechnology for Biofuels, 2017, 10, 275.	6.2	44
44	HISTONE DEACETYLASE 9 Functions with Polycomb Silencing to Repress <i>FLOWERING LOCUS C</i> Expression. Plant Physiology, 2020, 182, 555-565.	2.3	44
45	Feedback Regulation of FLC by FLOWERING LOCUS T (FT) and FD through a 5′ FLC Promoter Region in Arabidopsis. Molecular Plant, 2019, 12, 285-288.	3.9	35
46	Genetic and Epigenetic Understanding of the Seasonal Timing of Flowering. Plant Communications, 2020, 1, 100008.	3.6	35
47	Maternal transmission of the epigenetic â€~memory of winter cold' in Arabidopsis. Nature Plants, 2020, 6, 1211-1218.	4.7	32
48	Coupling of histone methylation and RNA processing by the nuclear mRNA cap-binding complex. Nature Plants, 2016, 2, 16015.	4.7	26
49	TEM1 combinatorially binds to <i>FLOWERING LOCUS T</i> and recruits a Polycomb factor to repress the floral transition in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
50	Molecular Genetic Understanding of Photoperiodic Regulation of Flowering Time in Arabidopsis and Soybean. International Journal of Molecular Sciences, 2022, 23, 466.	1.8	24
51	JASMONATE-ZIM DOMAIN proteins engage Polycomb chromatin modifiers to modulate Jasmonate signaling in Arabidopsis. Molecular Plant, 2021, 14, 732-747.	3.9	21
52	Genome engineering of <i>Nannochloropsis</i> with hundredâ€kilobase fragment deletions by Cas9 cleavages. Plant Journal, 2021, 106, 1148-1162.	2.8	19
53	Embryonic reactivation of <i>FLOWERING LOCUS C</i> by ABSCISIC ACID-INSENSITIVE 3 establishes the vernalization requirement in each Arabidopsis generation. Plant Cell, 2022, 34, 2205-2221.	3.1	19
54	Culture-Free Identification and Metabolic Profiling of Microalgal Single Cells via Ensemble Learning of Ramanomes. Analytical Chemistry, 2021, 93, 8872-8880.	3.2	16

Үиениі Не

#	Article	IF	CITATIONS
55	The <i>Arabidopsis</i> DREAM complex antagonizes WDR5A to modulate histone H3K4me2/3 deposition for a subset of genome repression. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
56	<i>SIN3 LIKE</i> genes mediate longâ€day induction of flowering but inhibit the floral transition in short days through histone deacetylation in Arabidopsis. Plant Journal, 2019, 100, 101-113.	2.8	13
57	<i>Arabidopsis</i> PEAPODs function with LIKE HETEROCHROMATIN PROTEIN1 to regulate lateral organ growth. Journal of Integrative Plant Biology, 2020, 62, 812-831.	4.1	13
58	Exploring a blue-light-sensing transcription factor to double the peak productivity of oil in Nannochloropsis oceanica. Nature Communications, 2022, 13, 1664.	5.8	12
59	Foxtail mosaic virus-induced flowering assays in monocot crops. Journal of Experimental Botany, 2020, 71, 3012-3023.	2.4	10
60	Intra-Ramanome Correlation Analysis Unveils Metabolite Conversion Network from an Isogenic Population of Cells. MBio, 2021, 12, e0147021.	1.8	8
61	LEAFY COTYLEDONs: old genes with new roles beyond seed development. F1000Research, 2019, 8, 2144.	0.8	8
62	Molecular basis of CONSTANS oligomerization in <i>FLOWERING LOCUS T</i> activation. Journal of Integrative Plant Biology, 2022, 64, 731-740.	4.1	8
63	Flowering and genome integrity control by a nuclear matrix protein in <i><i>Arabidopsis</i></i> . Nucleus, 2013, 4, 274-276.	0.6	7
64	Enabling photoperiodic control of flowering by timely chromatin silencing of the florigen gene. Nucleus, 2015, 6, 179-182.	0.6	7
65	Rapid, automated, and reliable antimicrobial susceptibility test from positive blood culture by CASTâ€R. , 2022, 1, 329-340.		6
66	αâ€Actinin4 nuclear translocation mediates gonadotropinâ€releasing hormone stimulation of follicleâ€stimulating hormone βâ€subunit gene transcription in LβT2 cells. FEBS Letters, 2012, 586, 1466-1471.	1.3	2