Andrew A Biewener

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8762263/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scaling body support in mammals: limb posture and muscle mechanics. Science, 1989, 245, 45-48.	6.0	738
2	Biomechanics of mammalian terrestrial locomotion. Science, 1990, 250, 1097-1103.	6.0	492
3	Bipedal locomotion: effects of speed, size and limb posture in birds and humans. Journal of Zoology, 1991, 224, 127-147.	0.8	378
4	Adaptive changes in trabecular architecture in relation to functional strain patterns and disuse. Bone, 1996, 19, 1-8.	1.4	318
5	Biomechanical consequences of scaling. Journal of Experimental Biology, 2005, 208, 1665-1676.	0.8	294
6	Energetics and mechanics of human running on surfaces of different stiffnesses. Journal of Applied Physiology, 2002, 92, 469-478.	1.2	289
7	Muscle mechanical advantage of human walking and running: implications for energy cost. Journal of Applied Physiology, 2004, 97, 2266-2274.	1.2	234
8	Muscle-tendon stresses and elastic energy storage during locomotion in the horse. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 120, 73-87.	0.7	228
9	Neuromechanics: an integrative approach for understanding motor control. Integrative and Comparative Biology, 2007, 47, 16-54.	0.9	226
10	Comparative power curves in bird flight. Nature, 2003, 421, 363-366.	13.7	224
11	Bone stress in the horse forelimb during locomotion at different gaits: A comparison of two experimental methods. Journal of Biomechanics, 1983, 16, 565-576.	0.9	222
12	Bone curvature: Sacrificing strength for load predictability?. Journal of Theoretical Biology, 1988, 131, 75-92.	0.8	207
13	Three-dimensional kinematics of hummingbird flight. Journal of Experimental Biology, 2007, 210, 2368-2382.	0.8	207
14	Running over rough terrain reveals limb control for intrinsic stability. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15681-15686.	3.3	180
15	Differential scaling of the long bones in the terrestrial carnivora and other mammals. Journal of Morphology, 1990, 204, 157-169.	0.6	179
16	Muscle force-length dynamics during level versus incline locomotion: a comparison of in vivo performance of two guinea fowl ankle extensors. Journal of Experimental Biology, 2003, 206, 2941-2958.	0.8	174
17	Musculoskeletal design in relation to body size. Journal of Biomechanics, 1991, 24, 19-29.	0.9	170
18	Hindlimb muscle function in relation to speed and gait: <i>in vivo</i> patterns of strain and activation in a hip and knee extensor of the rat (<i>Rattus norvegicus</i>). Journal of Experimental Biology, 2001, 204, 2717-2731.	0.8	156

#	Article	IF	CITATIONS
19	Kinematic and Electromyographic Analysis of the Functional Role of the Body Axis During Terrestrial and Aquatic Locomotion in the Salamander <i>Ambystoma Tigrinum</i> . Journal of Experimental Biology, 1992, 162, 107-130.	0.8	155
20	Bone modeling during growth: Dynamic strain equilibrium in the chick tibiotarsus. Calcified Tissue International, 1986, 39, 390-395.	1.5	153
21	Muscle Functionin vivo: A Comparison of Muscles used for Elastic Energy SavingsversusMuscles Used to Generate Mechanical Power1. American Zoologist, 1998, 38, 703-717.	0.7	152
22	Unsteady locomotion: integrating muscle function with whole body dynamics and neuromuscular control. Journal of Experimental Biology, 2007, 210, 2949-2960.	0.8	147
23	Safety factors in bone strength. Calcified Tissue International, 1993, 53, S68-S74.	1.5	142
24	Mechanical power output of bird flight. Nature, 1997, 390, 67-70.	13.7	137
25	Running over rough terrain: guinea fowl maintain dynamic stability despite a large unexpected change in substrate height. Journal of Experimental Biology, 2006, 209, 171-187.	0.8	134
26	Structural response of growing bone to exercise and disuse. Journal of Applied Physiology, 1994, 76, 946-955.	1.2	129
27	Mammalian Terrestrial Locomotion and Size. BioScience, 1989, 39, 776-783.	2.2	118
28	Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus)flying across a range of speeds. Journal of Experimental Biology, 2004, 207, 1689-1702.	0.8	112
29	Animal Locomotion. , 2018, , .		112
30	In vivo strain in the humerus of pigeons (Columba livia) during flight. Journal of Morphology, 1995, 225, 61-75.	0.6	110
31	Muscle function in avian flight: achieving power and control. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 1496-1506.	1.8	109
32	Telemetered in vivo strain analysis of locomotor mechanics of brachiating gibbons. Nature, 1989, 342, 270-272.	13.7	105
33	Walking and running in the red-legged running frog, Kassina maculata. Journal of Experimental Biology, 2004, 207, 399-410.	0.8	104
34	The role of intrinsic muscle mechanics in the neuromuscular control of stable running in the guinea fowl. Journal of Physiology, 2009, 587, 2693-2707.	1.3	102
35	Estimates of circulation and gait change based on a three-dimensional kinematic analysis of flight in cockatiels (<i>Nymphicus hollandicus</i>)and ringed turtle-doves (<i>Streptopelia risoria</i>). Journal of Experimental Biology, 2002, 205, 1389-1409.	0.8	102
36	Dynamic pressure maps for wings and tails of pigeons in slow, flapping flight, and their energetic implications. Journal of Experimental Biology, 2005, 208, 355-369.	0.8	87

#	Article	IF	CITATIONS
37	Patterns of mechanical energy change in tetrapod gait: pendula, springs and work. Journal of Experimental Zoology Part A, Comparative Experimental Biology, 2006, 305A, 899-911.	1.3	84
38	Wing and body kinematics of takeoff and landing flight in the pigeon (<i>Columba livia</i>). Journal of Experimental Biology, 2010, 213, 1651-1658.	0.8	82
39	Mechanics of locomotion and jumping in the horse (<i>Equus): in vivo</i> stress in the tibia and metatarsus. Journal of Zoology, 1988, 214, 547-565.	0.8	81
40	Pectoralis Muscle Force and Power Output During Flight in the Starling. Journal of Experimental Biology, 1992, 164, 1-18.	0.8	80
41	How cockatiels (Nymphicus hollandicus) modulate pectoralis power output across flight speeds. Journal of Experimental Biology, 2003, 206, 1363-1378.	0.8	79
42	In Vivo and In Vitro Heterogeneity of Segment Length Changes in the Semimembranosus Muscle of the Toad. Journal of Physiology, 2003, 549, 877-888.	1.3	78
43	Skeletal strain patterns and growth in the emu hindlimb during ontogeny. Journal of Experimental Biology, 2007, 210, 2676-2690.	0.8	77
44	Contractile properties of the pigeon supracoracoideus during different modes of flight. Journal of Experimental Biology, 2008, 211, 170-179.	0.8	77
45	Leg muscles that mediate stability: mechanics and control of two distal extensor muscles during obstacle negotiation in the guinea fowl. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 1580-1591.	1.8	73
46	Effects of surface grade on proximal hindlimb muscle strain and activation during rat locomotion. Journal of Applied Physiology, 2002, 93, 1731-1743.	1.2	72
47	Dynamics of leg muscle function in tammar wallabies (M. eugenii)during levelversusincline hopping. Journal of Experimental Biology, 2004, 207, 211-223.	0.8	72
48	Ontogenetic patterns of limb loading, in vivo bone strains and growth in the goat radius. Journal of Experimental Biology, 2004, 207, 2577-2588.	0.8	71
49	Pigeons steer like helicopters and generate down- and upstroke lift during low speed turns. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19990-19995.	3.3	71
50	Experimental alteration of limb posture in the chicken (Gallus gallus) and its bearing on the use of birds as analogs for dinosaur locomotion. Journal of Morphology, 1999, 240, 237-249.	0.6	70
51	Comparison of human gastrocnemius forces predicted by Hill-type muscle models and estimated from ultrasound images. Journal of Experimental Biology, 2017, 220, 1643-1653.	0.8	68
52	Hind limb scaling of kangaroos and wallabies (superfamily Macropodoidea): implications for hopping performance, safety factor and elastic savings. Journal of Anatomy, 2008, 212, 153-163.	0.9	67
53	Wing kinematics of avian flight across speeds. Journal of Avian Biology, 2003, 34, 177-184.	0.6	66
54	Low speed maneuvering flight of the rose-breasted cockatoo (Eolophus roseicapillus). I. Kinematic and neuromuscular control of turning. Journal of Experimental Biology, 2007, 210, 1897-1911.	0.8	65

I

#	Article	IF	CITATIONS
55	Allometry and curvature in the long bones of quadrupedal mammals. Journal of Zoology, 1992, 226, 455-467.	0.8	64
56	Functional diversification within and between muscle synergists during locomotion. Biology Letters, 2008, 4, 41-44.	1.0	64
57	Outrun or Outmaneuver: Predator–Prey Interactions as a Model System for Integrating Biomechanical Studies in a Broader Ecological and Evolutionary Context. Integrative and Comparative Biology, 2015, 55, icv074.	0.9	64
58	Unpredictability of escape trajectory explains predator evasion ability and microhabitat preference of desert rodents. Nature Communications, 2017, 8, 440.	5.8	64
59	Locomotion as an emergent property of muscle contractile dynamics. Journal of Experimental Biology, 2016, 219, 285-294.	0.8	61
60	Morphological and kinematic basis of the hummingbird flight stroke: scaling of flight muscle transmission ratio. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1986-1992.	1.2	60
61	Regional patterns of pectoralis fascicle strain in the pigeon Columba livia during level flight. Journal of Experimental Biology, 2005, 208, 771-786.	0.8	59
62	Negotiating obstacles: running kinematics of the lizard Sceloporus malachiticus. Journal of Zoology, 2006, 270, 359-371.	0.8	59
63	Estimates of circulation and gait change based on a three-dimensional kinematic analysis of flight in cockatiels (Nymphicus hollandicus) and ringed turtle-doves (Streptopelia risoria). Journal of Experimental Biology, 2002, 205, 1389-409.	0.8	53
64	Through the eyes of a bird: modelling visually guided obstacle flight. Journal of the Royal Society Interface, 2014, 11, 20140239.	1.5	52
65	Muscle function during takeoff and landing flight in the pigeon (<i>Columba livia</i>). Journal of Experimental Biology, 2012, 215, 4104-14.	0.8	51
66	Accuracy of gastrocnemius muscles forces in walking and running goats predicted by one-element and two-element Hill-type models. Journal of Biomechanics, 2013, 46, 2288-2295.	0.9	51
67	Low speed maneuvering flight of the rose-breasted cockatoo (Eolophus roseicapillus). II. Inertial and aerodynamic reorientation. Journal of Experimental Biology, 2007, 210, 1912-1924.	0.8	50
68	Joint work and power associated with acceleration and deceleration in tammar wallabies (Macropus) Tj ETQq0 0	0 rgBT /C	verlock 10 T 49
69	Patterns of strain and activation in the thigh muscles of goats across gaits during level locomotion. Journal of Experimental Biology, 2005, 208, 4599-4611.	0.8	49
70	A Muscle's Force Depends on the Recruitment Patterns of Its Fibers. Annals of Biomedical Engineering, 2012, 40, 1708-1720.	1.3	48
71	Compliance, actuation, and work characteristics of the goat foreleg and hindleg during level, uphill, and downhill running. Journal of Applied Physiology, 2008, 104, 130-141.	1.2	47

A collisional perspective on quadrupedal gait dynamics. Journal of the Royal Society Interface, 2011, 8, 1.5 47 1480-1486.

#	Article	IF	CITATIONS
73	Future directions for the analysis of musculoskeletal design and locomotor performance. Journal of Morphology, 2002, 252, 38-51.	0.6	42
74	Dynamics of goat distal hind limb muscle–tendon function in response to locomotor grade. Journal of Experimental Biology, 2009, 212, 2092-2104.	0.8	42
75	The functional morphology of xenarthrous vertebrae in the armadilloDasypus novemcinctus (Mammalia, Xenarthra). Journal of Morphology, 1992, 214, 63-81.	0.6	40
76	The effect of fast and slow motor unit activation on whole-muscle mechanical performance: the size principle may not pose a mechanical paradox. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140002.	1.2	40
77	Hummingbird flight stability and control in freestream turbulent winds. Journal of Experimental Biology, 2015, 218, 1444-52.	0.8	40
78	The aerodynamics of avian take-off from direct pressure measurements in Canada geese (Branta) Tj ETQq0 0 0 r	gBT/Qver	lockj0 Tf 50
79	Modulation of in vivo muscle power output during swimming in the African clawed frog (Xenopus) Tj ETQq1 1 C).784314 ı 0.8	rgBT ₃ /Overloc
80	Effects of flight speed upon muscle activity in hummingbirds. Journal of Experimental Biology, 2010, 213, 2515-2523.	0.8	39
81	Hummingbird flight. Current Biology, 2012, 22, R472-R477.	1.8	39
82	Asymmetrical Force Production in the Maneuvering Flight of Pigeons. Auk, 1998, 115, 916-928.	0.7	38
83	The mechanics of jumping versus steady hopping in yellow-footed rock wallabies. Journal of Experimental Biology, 2005, 208, 2741-2751.	0.8	38
84	In vivo muscle function vs speed I. Muscle strain in relation to length change of the muscle-tendon unit. Journal of Experimental Biology, 2005, 208, 1175-1190.	0.8	38
85	Kinematics and power requirements of ascending and descending flight in the pigeon (<i>Columba) Tj ETQq1 1</i>	0.784314 0.8	rgð /Overlo
86	Multiple Phylogenetically Distinct Events Shaped the Evolution of Limb Skeletal Morphologies Associated with Bipedalism in the Jerboas. Current Biology, 2015, 25, 2785-2794.	1.8	38
87	In vivo muscle function vs speed II. Muscle function trotting up an incline. Journal of Experimental Biology, 2005, 208, 1191-1200.	0.8	36
88	Integration within and between muscles during terrestrial locomotion:effects of incline and speed. Journal of Experimental Biology, 2008, 211, 2303-2316.	0.8	36
89	Experimental determination of three-dimensional cervical joint mobility in the avian neck. Frontiers in Zoology, 2017, 14, 37.	0.9	36
90	Functional and architectural complexity within and between muscles: regional variation and intermuscular force transmission. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 1477-1487.	1.8	35

#	Article	IF	CITATIONS
91	Pigeons trade efficiency for stability in response to level of challenge during confined flight. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3392-3396.	3.3	35
92	BigDog-Inspired Studies in the Locomotion of Goats and Dogs. Integrative and Comparative Biology, 2011, 51, 190-202.	0.9	34
93	Validation of Hill-Type Muscle Models in Relation to Neuromuscular Recruitment and Force-Velocity Properties: Predicting Patterns of In Vivo Muscle Force. Integrative and Comparative Biology, 2014, 54, 1072-1083.	0.9	33
94	Threeâ€dimensional mobility and muscle attachments in the pectoral limb of the Triassic cynodont <i>Massetognathus pascuali</i> (Romer, 1967). Journal of Anatomy, 2018, 232, 383-406.	0.9	33
95	Muscle-specific indices to characterise the functional behaviour of human lower-limb muscles during locomotion. Journal of Biomechanics, 2019, 89, 134-138.	0.9	33
96	Effects of load carrying on metabolic cost and hindlimb muscle dynamics in guinea fowl (Numida) Tj ETQq0 0 0 r	gBT /Over	$\log_{31} 10$ Tf 50
97	EMG analysis tuned for determining the timing and level of activation in different motor units. Journal of Electromyography and Kinesiology, 2011, 21, 557-565.	0.7	31
98	Directional Differences in the Biaxial Material Properties of Fascia Lata and the Implications for Fascia Function. Annals of Biomedical Engineering, 2014, 42, 1224-1237.	1.3	31
99	Western and Clark's grebes use novel strategies for running on water. Journal of Experimental Biology, 2015, 218, 1235-1243.	0.8	31
100	Mechanics of evolutionary digit reduction in fossil horses (Equidae). Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171174.	1.2	30
101	Young wallabies get a free ride. Nature, 1998, 395, 653-654.	13.7	29
102	Exercise and reduced muscle mass in starlings. Nature, 2000, 406, 585-586.	13.7	29
103	Nature-inspired flight—beyond the leap. Bioinspiration and Biomimetics, 2010, 5, 040201.	1.5	28
104	Comparative hindlimb myology of footâ€propelled swimming birds. Journal of Anatomy, 2018, 232, 105-123.	0.9	28
105	A constitutive description of the anisotropic response of the fascia lata. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 30, 306-323.	1.5	26
106	Modulation of proximal muscle function during level versusincline hopping in tammar wallabies (Macropus eugenii). Journal of Experimental Biology, 2007, 210, 1255-1265.	0.8	25
107	High-speed surface reconstruction of a flying bird using structured-light. Journal of Experimental Biology, 2017, 220, 1956-1961.	0.8	25
108	Modulation of joint moments and work in the goat hindlimb with locomotor speed and surface grade. Journal of Experimental Biology, 2013, 216, 2201-12.	0.8	24

#	Article	IF	CITATIONS
109	Tuning of feedforward control enables stable muscle force-length dynamics after loss of autogenic proprioceptive feedback. ELife, 2020, 9, .	2.8	24
110	Regulation of respiratory airflow during panting and feeding in the dog. Respiration Physiology, 1985, 61, 185-195.	2.8	23
111	In Vivo Bone Strain and Ontogenetic Growth Patterns in Relation to Lifeâ€History Strategies and Performance in Two Vertebrate Taxa: Goats and Emu. Physiological and Biochemical Zoology, 2006, 79, 57-72.	0.6	22
112	The capacity of the human iliotibial band to store elastic energy during running. Journal of Biomechanics, 2015, 48, 3341-3348.	0.9	21
113	Optic flow stabilizes flight in ruby-throated hummingbirds. Journal of Experimental Biology, 2016, 219, 2443-8.	0.8	21
114	Rules to fly by: pigeons navigating horizontal obstacles limit steering by selecting gaps most aligned to their flight direction. Interface Focus, 2017, 7, 20160093.	1.5	21
115	Broad similarities in shoulder muscle architecture and organization across two amniotes: implications for reconstructing non-mammalian synapsids. PeerJ, 2020, 8, e8556.	0.9	21
116	Pigeons (C. livia) Follow Their Head during Turning Flight: Head Stabilization Underlies the Visual Control of Flight. Frontiers in Neuroscience, 2017, 11, 655.	1.4	20
117	Evaluation of a bone'sin vivo 24-hour loading history for physical exercise compared with background loading. Journal of Orthopaedic Research, 1998, 16, 29-37.	1.2	19
118	Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion. Journal of Experimental Biology, 2013, 216, 198-207.	0.8	19
119	Foraging at the edge of the world: low-altitude, high-speed manoeuvering in barn swallows. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150391.	1.8	19
120	Vertical leaping mechanics of the Lesser Egyptian Jerboa reveal specialization for maneuverability rather than elastic energy storage. Frontiers in Zoology, 2017, 14, 32.	0.9	19
121	Variability in forelimb bone strains during non-steady locomotor activities in goats. Journal of Experimental Biology, 2008, 211, 1148-1162.	0.8	18
122	Biomechanics and neural control of movement, 20Âyears later: what have we learned and what has changed?. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 91.	2.4	18
123	Scaling of the ankle extensor muscleâ€tendon units and the biomechanical implications for bipedal hopping locomotion in the postâ€pouch kangaroo <i>Macropus fuliginosus</i> . Journal of Anatomy, 2017, 231, 921-930.	0.9	17
124	Mechanics, modulation and modelling: how muscles actuate and control movement. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 1463-1465.	1.8	16
125	There is always a trade-off between speed and force in a lever system: comment on McHenry (2010). Biology Letters, 2011, 7, 878-879.	1.0	16
126	Scaling of the Spring in the Leg during Bouncing Gaits of Mammals. Integrative and Comparative Biology, 2014, 54, 1099-1108.	0.9	16

#	Article	IF	CITATIONS
127	Foot-propelled swimming kinematics and turning strategies in common loons. Journal of Experimental Biology, 2018, 221, .	0.8	16
128	Pigeons produce aerodynamic torques through changes in wing trajectory during low speed aerial turns. Journal of Experimental Biology, 2015, 218, 480-90.	0.8	15
129	The Evolution of a Single Toe in Horses: Causes, Consequences, and the Way Forward. Integrative and Comparative Biology, 2019, 59, 638-655.	0.9	15
130	Differential muscle function between muscle synergists: long and lateral heads of the triceps in jumping and landing goats (Capra hircus). Journal of Applied Physiology, 2008, 105, 1262-1273.	1.2	14
131	Flying between obstacles with an autonomous knife-edge maneuver. , 2014, , .		14
132	Mono- versus biarticular muscle function in relation to speed and gait changes: in vivo analysis of the goat triceps brachii. Journal of Experimental Biology, 2009, 212, 3349-3360.	0.8	13
133	The human iliotibial band is specialized for elastic energy storage compared with the chimp fascia lata. Journal of Experimental Biology, 2015, 218, 2382-93.	0.8	12
134	Does a two-element muscle model offer advantages when estimating ankle plantar flexor forces during human cycling?. Journal of Biomechanics, 2018, 68, 6-13.	0.9	12
135	Experimental Study of Low Speed Turning Flight in Cockatoos and Cockatiels. , 2007, , .		11
136	A moving topic: control and dynamics of animal locomotion. Biology Letters, 2010, 6, 387-388.	1.0	11
137	Metabolic cost underlies task-dependent variations in motor unit recruitment. Journal of the Royal Society Interface, 2018, 15, 20180541.	1.5	11
138	In vivo force-length and activation dynamics of two distal rat hindlimb muscles in relation to gait and grade. Journal of Experimental Biology, 2019, 222, .	0.8	11
139	Modulation of Flight Muscle Recruitment and Wing Rotation Enables Hummingbirds to Mitigate Aerial Roll Perturbations. Current Biology, 2020, 30, 187-195.e4.	1.8	11
140	Effect of muscle stimulation intensity on the heterogeneous function of regions within an architecturally complex muscle. Journal of Applied Physiology, 2021, 130, 941-951.	1.2	11
141	Fatigue alters <i>in vivo</i> function within and between limb muscles during locomotion. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1193-1197.	1.2	10
142	Goats decrease hindlimb stiffness when walking over compliant surfaces. Journal of Experimental Biology, 2019, 222, .	0.8	9
143	Added mass in rat plantaris muscle causes a reduction in mechanical work. Journal of Experimental Biology, 2020, 223, .	0.8	9
144	Effects of Elastic Energy Storage on Muscle Work and Efficiency. Journal of Applied Biomechanics, 1997, 13, 422-426.	0.3	8

#	Article	IF	CITATIONS
145	Skeletal Muscle Shape Change in Relation to Varying Force Requirements Across Locomotor Conditions. Frontiers in Physiology, 2020, 11, 143.	1.3	8
146	Walking with tyrannosaurs. Nature, 2002, 415, 971-973.	13.7	7
147	Aquatic and terrestrial takeoffs require different hindlimb kinematics and muscle function in mallard ducks. Journal of Experimental Biology, 2020, 223, .	0.8	7
148	Stability and manoeuvrability in animal movement: lessons from biology, modelling and robotics. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212492.	1.2	6
149	Functional morphology of the ankle extensor muscleâ€ŧendon units in the springhare <i>Pedetes capensis</i> shows convergent evolution with macropods for bipedal hopping locomotion. Journal of Anatomy, 2020, 237, 568-578.	0.9	4
150	Task-dependent recruitment across ankle extensor muscles and between mechanical demands is driven by the metabolic cost of muscle contraction. Journal of the Royal Society Interface, 2021, 18, 20200765.	1.5	4
151	Tired of fatigue? Factors affecting the force-length relationship of muscle. Journal of Applied Physiology, 2006, 101, 5-6.	1.2	3
152	Editorial policy on computational, simulation and/or robotic papers. Journal of Experimental Biology, 2012, 215, 4051-4051.	0.8	3
153	Post-activation muscle potentiation and its relevance to cyclical behaviours. Biology Letters, 2020, 16, 20200255.	1.0	3
154	Lower-limb muscle function is influenced by changing mechanical demands in cycling. Journal of Experimental Biology, 2021, 224, .	0.8	3
155	The mechanics of horse locomotion: Strains developed in the limb bones at different gaits. Journal of Biomechanics, 1981, 14, 487.	0.9	2
156	Getting to grips with how birds land stably on complex surfaces. Nature, 2019, 574, 180-181.	13.7	2
157	Experimental alteration of limb posture in the chicken (Gallus gallus) and its bearing on the use of birds as analogs for dinosaur locomotion. , 1999, 240, 237.		2
158	Locomotor design for acceleration versus elastic energy storage in kangaroo rat hopping. Journal of Biomechanics, 1987, 20, 896.	0.9	1
159	Animal Locomotion: Near-Ground Low-Cost Flights. Current Biology, 2018, 28, R1348-R1349.	1.8	1
160	Experimental alteration of limb posture in the chicken (Gallus gallus) and its bearing on the use of birds as analogs for dinosaur locomotion. , 1999, 240, 237.		1
161	Mechanical loading and skeletal remodeling during growth. Journal of Biomechanics, 1985, 18, 226-227.	0.9	0
162	Title is missing!. International Journal of Primatology, 2000, 21, 183-186.	0.9	0

#	Article	IF	CITATIONS
163	Criteria for manuscript acceptance. Journal of Experimental Biology, 2007, 210, 2765-2765.	0.8	0
164	Biomechanics of swimming and flight. Journal of Experimental Biology, 2008, 211, 163-163.	0.8	0
165	R. McNeill Alexander (1934–2016). Nature, 2016, 532, 442-442.	13.7	0
166	Evolutionary race as predators hunt prey. Nature, 2018, 554, 176-178.	13.7	0
167	A Practical Guide to Vertebrate Mechanics. Christopher McGowan. Quarterly Review of Biology, 2000, 75, 68-69.	0.0	0
168	Modulation of Flight Muscle Recruitment and Wing Rotation Enables Hummingbirds to Mitigate Aerial Roll Perturbations. SSRN Electronic Journal, 0, , .	0.4	0