Stellios Arseniyadis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/876199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase-Transfer-Catalyzed Alkylation of Hydantoins. ACS Organic & Inorganic Au, 2022, 2, 312-317.	1.9	8
2	DNA-Based Asymmetric Catalysis: Past, Present and Future. Series on Chemistry, Energy and the Environment, 2022, , 1-30.	0.3	0
3	4-Cyano-3-oxotetrahydrothiophene (c-THT): An Ideal Acrylonitrile Anion Equivalent. SynOpen, 2021, 05, 25-28.	0.8	1
4	Synthesis of α-Difluoromethyl Aryl Ketones through a Photoredox Difluoromethylation of Enol Silanes. Organic Letters, 2021, 23, 4239-4243.	2.4	11
5	Direct Access to Highly Enantioenriched α-Branched Acrylonitriles through a One-Pot Sequential Asymmetric Michael Addition/Retro-Dieckmann/Retro-Michael Fragmentation Cascade. Organic Letters, 2020, 22, 5995-6000.	2.4	8
6	<i>O</i> -Allylated Pudovik and Passerini Adducts as Versatile Scaffolds for Product Diversification. Journal of Organic Chemistry, 2020, 85, 12514-12525.	1.7	1
7	Scalable Aerobic Oxidation of Alcohols Using Catalytic DDQ/HNO ₃ . Organic Process Research and Development, 2020, 24, 856-860.	1.3	14
8	DNAâ€Based Asymmetric Inverse Electronâ€Demand Heteroâ€Diels–Alder. Chemistry - A European Journal, 2020, 26, 3519-3523.	1.7	10
9	Sequential Palladium-Catalyzed Allylic Alkylation/retro-Dieckmann Fragmentation Strategy for the Synthesis of α-Substituted Acrylonitriles. Organic Letters, 2019, 21, 9348-9352.	2.4	9
10	A Unified Strategy for the Synthesis of Difluoromethyl- and Vinylfluoride-Containing Scaffolds. Organic Letters, 2019, 21, 8205-8210.	2.4	18
11	A rational quest for selectivity through precise ligand-positioning in tandem DNA-catalysed Friedel–Crafts alkylation/asymmetric protonation. Chemical Science, 2019, 10, 2875-2881.	3.7	24
12	α,βâ€Unsaturated 2â€Acylâ€Imidazoles in Asymmetric Biohybrid Catalysis. ChemCatChem, 2019, 11, 5686-570	4.1.8	13
13	A Sequential Pd-AAA/Cross-Metathesis/Cope Rearrangement Strategy for the Stereoselective Synthesis of Chiral Butenolides. Organic Letters, 2019, 21, 2231-2235.	2.4	37
14	Spatial and temporal control of chemical processes. Nature Reviews Chemistry, 2019, 3, 706-722.	13.8	66
15	Asymmetric Synthesis of α-Quaternary γ-Lactams through Palladium-Catalyzed Asymmetric Allylic Alkylation. Organic Letters, 2019, 21, 603-607.	2.4	31
16	Dinucleating Schiff base ligand in Zn/4f coordination chemistry: synthetic challenges and catalytic activity evaluation. Dalton Transactions, 2018, 47, 4486-4493.	1.6	12
17	Highly Enantioselective, Baseâ€Free Synthesis of αâ€Quaternary Succinimides through Catalytic Asymmetric Allylic Alkylation. Chemistry - A European Journal, 2018, 24, 8076-8080.	1.7	19
18	Palladiumâ€Catalyzed Asymmetric Allylic Alkylation of 4â€Substituted Isoxazolidinâ€5â€ones: Straightforward Access to β ^{2,2} â€Amino Acids. Chemistry - A European Journal, 2018, 24, 4810-4814.	1.7	50

#	Article	IF	CITATIONS
19	Palladiumâ€catalysed <i>O</i> â€Allylation of αâ€Hydroxyphosphonates: An Expedient Entry into Phosphonoâ€oxaheterocycles. Advanced Synthesis and Catalysis, 2018, 360, 449-454.	2.1	9
20	Challenges and Opportunities in DNA-based Asymmetric Catalysis. Chimia, 2018, 72, 630.	0.3	8
21	DNAâ€Templated [2+2] Photocycloaddition: A Straightforward Entry into the Aplysinopsin Family of Natural Products. Angewandte Chemie - International Edition, 2018, 57, 11786-11791.	7.2	23
22	DNAâ€Templated [2+2] Photocycloaddition: A Straightforward Entry into the Aplysinopsin Family of Natural Products. Angewandte Chemie, 2018, 130, 11960-11965.	1.6	8
23	A decade of DNA-hybrid catalysis: from innovation to comprehension. Organic and Biomolecular Chemistry, 2017, 15, 7072-7087.	1.5	40
24	In situ targeted activation of an anticancer agent using ultrasound-triggered release of composite droplets. European Journal of Medicinal Chemistry, 2017, 142, 2-7.	2.6	7
25	A Palladium-Catalyzed Asymmetric Allylic Alkylation Approach to α-Quaternary γ-Butyrolactones. Organic Letters, 2017, 19, 14-17.	2.4	46
26	Total Synthesis of Putative 11-epi-Lyngbouilloside Aglycon. Frontiers in Chemistry, 2016, 4, 34.	1.8	4
27	Design, Synthesis, and Binding Affinity Evaluation of Hoechst 33258 Derivatives for the Development of Sequence-Specific DNA-Based Asymmetric Catalysts. ACS Catalysis, 2016, 6, 3096-3105.	5.5	51
28	Selective Tsuji–Trost type C-allylation of hydrazones: a straightforward entry into 4,5-dihydropyrazoles. Chemical Communications, 2016, 52, 14490-14493.	2.2	21
29	Expanding biohybrid-mediated asymmetric catalysis into the realm of RNA. Chemical Communications, 2016, 52, 8604-8607.	2.2	22
30	DNA-cellulose: an economical, fully recyclable and highly effective chiral biomaterial for asymmetric catalysis. Chemical Communications, 2015, 51, 6076-6079.	2.2	33
31	A fast and switchable microfluidic mixer based on ultrasound-induced vaporization of perfluorocarbon. Lab on A Chip, 2015, 15, 2025-2029.	3.1	19
32	High Spatiotemporal Control of Spontaneous Reactions Using Ultrasound-Triggered Composite Droplets. Journal of the American Chemical Society, 2014, 136, 7205-7208.	6.6	19
33	Recent developments in alkyne borylations. Tetrahedron, 2014, 70, 8431-8452.	1.0	172
34	Non-enzymatic acylative kinetic resolution of primary allylic amines. Chemical Communications, 2013, 49, 9338.	2.2	12
35	DNA vs. Mirrorâ€Image DNA: A Universal Approach to Tune the Absolute Configuration in DNAâ€Based Asymmetric Catalysis. Angewandte Chemie - International Edition, 2013, 52, 11546-11549.	7.2	76
36	Palladium atalyzed Asymmetric Allylic Alkylation of Cyclic Dienol Carbonates: Efficient Route to Enantioenriched γâ€Butenolides Bearing an All arbon αâ€Quaternary Stereogenic Center. Angewandte Chemie - International Edition, 2013, 52, 1257-1261.	7.2	107

STELLIOS ARSENIYADIS

#	Article	IF	CITATIONS
37	Palladium-Catalyzed Allylic Alkylation of Allyl Dienol Carbonates: Reactivity, Regioselectivity, Enantioselectivity, and Synthetic Applications. Synlett, 2013, 24, 2350-2364.	1.0	37
38	Lyngbouilloside and Related Macrolides from Marine Cyanobacteria. Natural Product Communications, 2013, 8, 1934578X1300800.	0.2	2
39	Lyngbouilloside and related macrolides from marine cyanobacteria. Natural Product Communications, 2013, 8, 965-72.	0.2	6
40	Catalysis-based enantioselective total synthesis of myxothiazole Z, (14S)-melithiazole G and (14S)-cystothiazole F. Chemical Communications, 2012, 48, 10508.	2.2	16
41	Kinetic resolution of propargylamines via a highly enantioselective non-enzymatic N-acylation process. Chemical Communications, 2012, 48, 10511.	2.2	19
42	Total Synthesis of Nominal Lyngbouilloside Aglycon. Organic Letters, 2012, 14, 314-317.	2.4	37
43	A Modular and Scalable Oneâ€Pot Synthesis of Polysubstituted Furans. Angewandte Chemie - International Edition, 2012, 51, 7562-7566.	7.2	64
44	A concise approach towards the synthesis of WS75624 A and WS75624 B via the cross-metathesis of vinyl-functionalized thiazoles. Tetrahedron Letters, 2011, 52, 2246-2249.	0.7	16
45	Studies towards the N-acylative kinetic resolution of NOBIN. Collection of Czechoslovak Chemical Communications, 2011, 76, 1239-1253.	1.0	23
46	Stereoselective Synthesis of the C1â^'C11 and C12â^'C34 Fragments of Mycalolide A. Organic Letters, 2010, 12, 3348-3351.	2.4	26
47	Expedient Synthesis of a Stereoisomer of Acremolide B. Journal of Organic Chemistry, 2010, 75, 8478-8486.	1.7	12
48	Total Synthesis and Structural Revision of Vannusals A and B: Synthesis of the Originally Assigned Structure of Vannusal B. Journal of the American Chemical Society, 2010, 132, 7138-7152.	6.6	59
49	Two Concise Total Syntheses of (â^')-Bitungolide F. Organic Letters, 2010, 12, 4074-4077.	2.4	27
50	Amine, Alcohol and Phosphine Catalysts for Acyl Transfer Reactions. Topics in Current Chemistry, 2010, 291, 233-280.	4.0	72
51	Asymmetric Pentenylation of Aldehydes: A New Benchmark for the Preparation of Ethyl-Substituted Homoallylic Alcohol. Synlett, 2009, 2009, 213-216.	1.0	5
52	One-Pot Hydrosilylation-RCM-Protodesilylation: Application to the Synthesis of ω-Alkenyl α,β-Unsaturated Lactones. Synlett, 2009, 2009, 565-568.	1.0	3
53	Straightforward Synthesis of the Near-Infrared Fluorescent Voltage-Sensitive Dye RH1691 and Analogues Thereof. Organic Letters, 2009, 11, 4822-4825.	2.4	19
54	Enantioselective Organocatalytic Conjugate Reduction of β-Azole-Containing α,β-Unsaturated Aldehydes. Organic Letters, 2009, 11, 2756-2759.	2.4	41

STELLIOS ARSENIYADIS

#	Article	IF	CITATIONS
55	Total Synthesis of Cystothiazole A by Microwaveâ€Assisted Olefin Crossâ€Metathesis. European Journal of Organic Chemistry, 2008, 2008, 2701-2704.	1.2	29
56	Asymmetric Total Synthesis of the Immunosuppressant (â^')â€Pironetin. Angewandte Chemie - International Edition, 2008, 47, 10137-10140.	7.2	44
57	Synthesis of Vinyl-Functionalized Oxazoles by Olefin Cross-Metathesis. Journal of Organic Chemistry, 2008, 73, 2400-2403.	1.7	40
58	Facile Synthesis of the C1-C13 Fragment of Lyngbouilloside. Synlett, 2008, 2008, 712-714.	1.0	2
59	Formal Synthesis of Leustroducsin B. Synlett, 2008, 2008, 2617-2620.	1.0	7
60	Nonenzymatic Kinetic Resolution of Amines in Ionic Liquids. Synlett, 2008, 2008, 268-272.	1.0	4
61	Cross-Metathesis between α-Methylene-γ-butyrolactone and Olefins: A Dramatic Additive Effect. Organic Letters, 2007, 9, 1695-1698.	2.4	83
62	A Concise Total Synthesis of Melithiazole C. Organic Letters, 2007, 9, 3425-3427.	2.4	33
63	Synthesis of Vinyl-Functionalized Thiazoles by Cross-Metathesis and Tandem Stille Coupling/Cross-Metathesis. Advanced Synthesis and Catalysis, 2007, 349, 152-156.	2.1	28
64	The Chemistry and Biology of Epothilones—The Wheel Keeps Turning. ChemMedChem, 2007, 2, 396-423.	1.6	119
65	Rapid, room-temperature acylative kinetic resolution of sec-alcohols using atropisomeric 4-aminopyridine/triphenylphosphine catalysis. Tetrahedron, 2006, 62, 295-301.	1.0	45
66	Molecular Design and Chemical Synthesis of a Highly Potent Epothilone. ChemMedChem, 2006, 1, 41-44.	1.6	44
67	Nucleophilic Catalysis by 4-(Dialkylamino)pyridines Revisited ? The Search for Optimal Reactivity and Selectivity. ChemInform, 2005, 36, no.	0.1	Ο
68	Unprecedented, Fully Recyclable, Solid-Supported Reagent for the Kinetic Resolution of Racemic Amines Through Enantioselective N-Acetylation ChemInform, 2005, 36, no.	0.1	0
69	Unprecedented, fully recyclable, solid-supported reagent for the kinetic resolution of racemic amines through enantioselective N-acetylation. Chemical Communications, 2005, , 3310.	2.2	21
70	Tuning the Enantioselective N-Acetylation of Racemic Amines:Â A Spectacular Salt Effect. Journal of the American Chemical Society, 2005, 127, 6138-6139.	6.6	42
71	Kinetic Resolution of Amines: A Highly Enantioselective and Chemoselective Acetylating Agent with a Unique Solvent-Induced Reversal of Stereoselectivity. Angewandte Chemie - International Edition, 2004, 43, 3314-3317.	7.2	104
72	Nucleophilic Catalysis by 4-(Dialkylamino)pyridines Revisited?The Search for Optimal Reactivity and Selectivity. Angewandte Chemie - International Edition, 2004, 43, 5436-5441.	7.2	243

#	Article	IF	CITATIONS
73	Kinetic Resolution of Amines: A Highly Enantioselective and Chemoselective Acetylating Agent with a Unique Solvent-Induced Reversal of Stereoselectivity ChemInform, 2004, 35, no.	0.1	0
74	Resin-bound 4-phenyl-1,2-dihydroquinoline (DHQ): a new safety-catch linker for solid-phase organic synthesis (SPOS). Tetrahedron Letters, 2004, 45, 2251-2253.	0.7	31
75	A straightforward preparation of amino–polystyrene resin from Merrifield resin. Tetrahedron Letters, 2002, 43, 9717-9719.	0.7	39