List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8761806/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemically deposited metal nanoparticles for enhancing the performance of microfluidic MEMS in biochemical analysis. International Journal of Nanomanufacturing, 2009, 4, 99.	0.3	209
2	Site Selective and Single Complex Laser-Based Spectroscopies: A Window on Excited State Electronic Structure, Excitation Energy Transfer, and Electron–Phonon Coupling of Selected Photosynthetic Complexes. Chemical Reviews, 2011, 111, 4546-4598.	23.0	138
3	Identification and quantitation of benzo[a]pyrene-DNA adducts formed in mouse skin. Chemical Research in Toxicology, 1993, 6, 356-363.	1.7	132
4	Expanded Analysis of Benzo[a]pyreneâ~'DNA Adducts Formed in Vitro and in Mouse Skin:Â Their Significance in Tumor Initiation. Chemical Research in Toxicology, 1996, 9, 897-903.	1.7	123
5	Transient and persistent hole burning of the reaction center of photosystem II. The Journal of Physical Chemistry, 1989, 93, 1649-1654.	2.9	112
6	On the Shape of the Phonon Spectral Density in Photosynthetic Complexes. Journal of Physical Chemistry B, 2013, 117, 7317-7323.	1.2	98
7	Fluorescence line narrowing: a high-resolution window on DNA and protein damage from chemical carcinogens. Chemical Research in Toxicology, 1991, 4, 256-269.	1.7	88
8	Identification and quantitation of 7,12-dimethylbenz[a]anthracene-DNA adducts formed in mouse skin. Chemical Research in Toxicology, 1993, 6, 364-371.	1.7	82
9	Challenges facing an understanding of the nature of low-energy excited states in photosynthesis. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1627-1640.	0.5	74
10	Detection and Quantification of Depurinated Benzo[a]pyrene-Adducted DNA Bases in the Urine of Cigarette Smokers and Women Exposed to Household Coal Smoke. Chemical Research in Toxicology, 2001, 14, 192-201.	1.7	70
11	Novel biosensor chip for simultaneous detection of DNA-carcinogen adducts with low-temperature fluorescence. Biosensors and Bioelectronics, 2004, 19, 547-556.	5.3	57
12	Effects of detergent on the excited state structure and relaxation dynamics of the photosystem II reaction center: A high resolution hole burning study. Photosynthesis Research, 1991, 27, 19-29.	1.6	52
13	Conformational studies of the (+)-trans, (â~')-trans, (+)-cis, and (â~')-cis adducts of anti-benzo[a]pyrene diolepoxide to N2-dG in duplex oligonucleotides using polyacrylamide gel electrophoresis and low-temperature fluorescence spectroscopy. Biophysical Chemistry, 1995, 56, 281-296.	1.5	51
14	Fluorescence line-narrowing spectroscopy in the study of chemical carcinogenesis. Analytical Chemistry, 1989, 61, 1023A-1032A.	3.2	48
15	Potential biomarker for early risk assessment of prostate cancer. Prostate, 2006, 66, 1565-1571.	1.2	48
16	Monoclonal Antibodyâ^'Gold Biosensor Chips for Detection of Depurinating Carcinogenâ^'DNA Adducts by Fluorescence Line-Narrowing Spectroscopy. Analytical Chemistry, 2000, 72, 3709-3716.	3.2	47
17	Determination of Benzo[a]pyreneâ^ and 7,12-Dimethylbenz[a]anthraceneâ^ DNA Adducts Formed in Rat Mammary Glands. Chemical Research in Toxicology, 1997, 10, 941-947.	1.7	46
18	Low-Energy Chlorophyll States in the CP43 Antenna Protein Complex: Simulation of Various Optical Spectra. II. Journal of Physical Chemistry B, 2008, 112, 9934-9947.	1.2	46

#	Article	IF	CITATIONS
19	Depurinating and Stable Benzo[a]pyreneâ^'DNA Adducts Formed in Isolated Rat Liver Nuclei. Chemical Research in Toxicology, 1996, 9, 1113-1116.	1.7	41
20	ldentification and Quantification of the Depurinating DNA Adducts Formed in Mouse Skin Treated with Dibenzo[a,l]pyrene (DB[a,l]P) or Its Metabolites and in Rat Mammary Gland Treated with DB[a,l]P. Chemical Research in Toxicology, 2005, 18, 976-983.	1.7	41
21	Identification and quantitation of 7-(benzo[a]pyren-6-yl)guanine in the urine and feces of rats treated with benzo[a]pyrene. Chemical Research in Toxicology, 1990, 3, 441-444.	1.7	40
22	Red Antenna States of Photosystem I from CyanobacteriaSynechocystisPCC 6803 andThermosynechococcus elongatus:Â Single-Complex Spectroscopy and Spectral Hole-Burning Study. Journal of Physical Chemistry B, 2007, 111, 286-292.	1.2	40
23	Influence of C-5 substituted cytosine and related nucleoside analogs on the formation of benzo[a]pyrene diol epoxide-dG adducts at CG base pairs of DNA. Nucleic Acids Research, 2011, 39, 3988-4006.	6.5	40
24	The CP43 Proximal Antenna Complex of Higher Plant Photosystem II Revisited: Modeling and Hole Burning Study. I. Journal of Physical Chemistry B, 2008, 112, 9921-9933.	1.2	39
25	Insight into the Electronic Structure of the CP47 Antenna Protein Complex of Photosystem II: Hole Burning and Fluorescence Study. Journal of the American Chemical Society, 2010, 132, 4214-4229.	6.6	39
26	Lowest Electronic States of the CP47 Antenna Protein Complex of Photosystem II: Simulation of Optical Spectra and Revised Structural Assignments. Journal of Physical Chemistry B, 2010, 114, 11884-11898.	1.2	37
27	On-line identification of depurinating DNA adducts in human urine by capillary electrophoresis — fluorescence line narrowing spectroscopy. Electrophoresis, 2000, 21, 799-806.	1.3	36
28	Structure, Conformations, and Repair of DNA Adducts from Dibenzo[a,l]pyrene:  32P-Postlabeling and Fluorescence Studies. Chemical Research in Toxicology, 1998, 11, 674-685.	1.7	35
29	Structured hole burned spectra of the primary donor state absorption region of Rhodopseudomonas viridis. Chemical Physics, 1989, 131, 99-113.	0.9	33
30	The role of organic dispersants in aqueous alumina suspensions. Journal of the European Ceramic Society, 2003, 23, 913-919.	2.8	33
31	Spectroscopic Study of the CP43′ Complex and the PSI–CP43′ Supercomplex of the Cyanobacterium <i>Synechocystis</i> PCC 6803. Journal of Physical Chemistry B, 2011, 115, 13339-13349.	1.2	33
32	Separation of catecholamines and dopamine-derived DNA adduct using a microfluidic device with electrochemical detection. Sensors and Actuators B: Chemical, 2006, 120, 42-50.	4.0	32
33	Identification of polycyclic aromatic hydrocarbon metabolites and DNA adducts in mixtures using fluorescence line narrowing spectrometry. Analytical Chemistry, 1986, 58, 816-820.	3.2	30
34	Charge-Transfer Character of the Low-Energy Chl <i>a</i> Q _{<i>y</i>} Absorption Band in Aggregated Light Harvesting Complexes II. Journal of Physical Chemistry B, 2014, 118, 6086-6091.	1.2	30
35	Effect of Spectral Density Shapes on the Excitonic Structure and Dynamics of the Fenna–Matthews–Olson Trimer from Chlorobaculum tepidum. Journal of Physical Chemistry A, 2016, 120, 6146-6154.	1.1	29
36	Synthesis and Structure Determination of the Adducts Formed by Electrochemical Oxidation of Dibenzo[a,l]pyrene in the Presence of Adenine. Chemical Research in Toxicology, 1999, 12, 749-757.	1.7	28

#	Article	IF	CITATIONS
37	Fluorescence line narrowing spectrometry of nucleoside-polycyclic aromatic hydrocarbon adducts on thin-layer chromatographic plates. Analytical Chemistry, 1988, 60, 2692-2694.	3.2	26
38	Preparation, Isolation, and Characterization of Dibenzo[a,l]pyrene Diol Epoxideâ^'Deoxyribonucleoside Monophosphate Adducts by HPLC and Fluorescence Line-Narrowing Spectroscopy. Chemical Research in Toxicology, 1999, 12, 789-795.	1.7	26
39	Low-Temperature Protein Dynamics of the B800 Molecules in the LH2 Light-Harvesting Complex: Spectral Hole Burning Study and Comparison with Single Photosynthetic Complex Spectroscopy. Journal of Physical Chemistry B, 2010, 114, 3426-3438.	1.2	24
40	Effect of the LHCII pigment–protein complex aggregation on photovoltaic properties of sensitized TiO ₂ solar cells. Physical Chemistry Chemical Physics, 2014, 16, 20856-20865.	1.3	24
41	Laser spectroscopic studies of DNA adduct structure types from enantiomeric diol epoxides of benzo[a]pyrene. Chemical Research in Toxicology, 1990, 3, 39-46.	1.7	23
42	Accurate modeling of fluorescence line narrowing difference spectra: Direct measurement of the single-site fluorescence spectrum. Journal of Chemical Physics, 2010, 133, 014506.	1.2	23
43	Spectral Characterization of Fluorescently Labeled Catechol Estrogen 3,4-Quinone-Derived N7 Guanine Adducts and Their Identification in Rat Mammary Gland Tissue. Chemical Research in Toxicology, 1998, 11, 1339-1345.	1.7	22
44	Fluorescence line-narrowing detection in chromatography and electrophoresis. Electrophoresis, 2000, 21, 1251-1266.	1.3	22
45	On the energy transfer between quasi-degenerate states with uncorrelated site distribution functions: An application to the CP43 complex of Photosystem II. Journal of Luminescence, 2007, 127, 245-250.	1.5	22
46	Mechanism of Primary Charge Separation in Photosynthetic Reaction Centers. , 2014, , 193-240.		22
47	Comparative laser spectroscopic study of DNA and polynucleotide adducts from the (+)-anti-diol epoxide of benzo[a]pyrene. Chemical Research in Toxicology, 1991, 4, 58-69.	1.7	21
48	Spectral Hole Burning: A Window on Excited State Electronic Structure, Heterogeneity, Electron–Phonon Coupling, and Transport Dynamics of Photosynthetic Units. , 1993, , 133-177.		21
49	Spectral Hole Burning, Recovery, and Thermocycling in Chlorophyll–Protein Complexes: Distributions of Barriers on the Protein Energy Landscape. Journal of Physical Chemistry B, 2012, 116, 11780-11790.	1.2	20
50	Plasmonic Enhancement of Biosolar Cells Employing Light Harvesting Complex II Incorporated with Core–Shell Metal@TiO ₂ Nanoparticles. Advanced Materials Interfaces, 2016, 3, 1600371.	1.9	20
51	On-line identification of diastereomeric dibenzo[a,l]pyrene diol epoxide-derived deoxyadenosine adducts by capillary electrophoresis–fluorescence line-narrowing and non-line narrowing spectroscopy. Journal of Chromatography A, 1999, 853, 159-170.	1.8	19
52	A Novel Method for the Isolation and Identification of Stable DNA Adducts Formed by Dibenzo[a,l]pyrene and Dibenzo[a,l]pyrene 11,12-Dihydrodiol 13,14-Epoxides in Vitro. Chemical Research in Toxicology, 1999, 12, 796-801.	1.7	19
53	On B800→B800 energy transfer in the LH2 complex of purple bacteria. Journal of Luminescence, 2002, 98, 123-129.	1.5	19
54	Integrated microfluidic device with an electroplated palladium decoupler for more sensitive amperometric detection of the 8-hydroxy-deoxyguanosine (8-OH-dG) DNA adduct. Analytical and Bioanalytical Chemistry, 2007, 388, 245-252.	1.9	19

#	Article	IF	CITATIONS
55	Probing environment fluctuations by two-dimensional electronic spectroscopy of molecular systems at temperatures below 5 K. Journal of Chemical Physics, 2015, 142, 212428.	1.2	19
56	Fluorescence line-narrowing spectral analysis of in vivo human hemoglobin-benzo[a]pyrene adducts: comparison to synthetic analogs. Journal of the American Chemical Society, 1990, 112, 5866-5869.	6.6	18
57	Spectral and Conformational Analysis of Deoxyadenosine Adducts Derived from syn- and anti-Dibenzo[a,l]pyrene Diol Epoxides: Fluorescence Studies. Chemical Research in Toxicology, 1999, 12, 768-777.	1.7	18
58	Effects of the Distributions of Energy or Charge Transfer Rates on Spectral Hole Burning in Pigment–Protein Complexes at Low Temperatures. Journal of Physical Chemistry B, 2011, 115, 15098-15109.	1.2	17
59	Primary Electron Donor(s) in Isolated Reaction Center of Photosystem II from Chlamydomonas reinhardtii. Journal of Physical Chemistry B, 2012, 116, 4860-4870.	1.2	17
60	Band Structure of the <i>Rhodobacter sphaeroides</i> Photosynthetic Reaction Center from Low-Temperature Absorption and Hole-Burned Spectra. Journal of Physical Chemistry B, 2016, 120, 5601-5616.	1.2	17
61	The structure of a red-shifted photosystem I reveals a red site in the core antenna. Nature Communications, 2020, 11, 5279.	5.8	17
62	Role of Fluorescence Line-Narrowing Spectroscopy and Related Luminescence-Based Techniques in the Elucidation of Mechanisms of Tumor Initiation by Polycyclic Aromatic Hydrocarbons and Estrogensâ€. Journal of Physical Chemistry B, 2004, 108, 10266-10283.	1.2	16
63	Cross-reactivity and conformational multiplicity of an anti-polycyclic aromatic hydrocarbon mAb. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7453-7458.	3.3	16
64	On destabilization of the Fenna–Matthews–Olson complex of Chlorobaculum tepidum. Photosynthesis Research, 2014, 120, 323-329.	1.6	16
65	Frequency-Domain Spectroscopic Study of the PS lâ^'CP43â€~ Supercomplex from the CyanobacteriumSynechocystisPCC 6803 Grown under Iron Stress Conditions. Journal of Physical Chemistry B, 2006, 110, 22436-22446.	1.2	15
66	Probing Electron-Transfer Times in Photosynthetic Reaction Centers by Hole-Burning Spectroscopy. Journal of Physical Chemistry Letters, 2012, 3, 1684-1694.	2.1	15
67	Critical assessment of the emission spectra of various photosystem II core complexes. Photosynthesis Research, 2015, 124, 253-265.	1.6	15
68	Conformational Studies of Stereoisomeric Tetrols Derived from syn- and anti-Dibenzo[a,l]pyrene Diol Epoxides. Chemical Research in Toxicology, 1997, 10, 677-686.	1.7	14
69	Structure Elucidation of the Adducts Formed by Fjord Region Dibenzo[a,l]pyrene-11,12-dihydrodiol 13,14-Epoxides with Deoxyguanosine. Chemical Research in Toxicology, 1999, 12, 778-788.	1.7	14
70	Spectroscopic Study of the Light-Harvesting CP29 Antenna Complex of Photosystem II—Part I. Journal of Physical Chemistry B, 2013, 117, 6585-6592.	1.2	14
71	On the Controversial Nature of the 825 nm Exciton Band in the FMO Protein Complex. Journal of Physical Chemistry Letters, 2014, 5, 1450-1456.	2.1	14
72	Modeling of Various Optical Spectra in the Presence of Slow Excitation Energy Transfer in Dimers and Trimers with Weak Interpigment Coupling: FMO as an Example. Journal of Physical Chemistry B, 2014, 118, 2032-2040.	1.2	14

#	Article	IF	CITATIONS
73	In-channel modification of electrochemical detector for the detection of bio-targets on microchip. Electrochemistry Communications, 2007, 9, 1536-1541.	2.3	13
74	On the Conflicting Estimations of Pigment Site Energies in Photosynthetic Complexes: A Case Study of the CP47 Complex. Analytical Chemistry Insights, 2016, 11, ACI.S32151.	2.7	13
75	New Insight into the Waterâ€Soluble Chlorophyllâ€Binding Protein from <i>Lepidium virginicum</i> . Photochemistry and Photobiology, 2016, 92, 428-435.	1.3	13
76	Supercoiled DNA Promotes Formation of Intercalated cis-N2-Deoxyguanine Adducts and Base-Stacked trans-N2-Deoxyguanine Adducts by (+)-7R,8S-Dihydrodiol-9S,10R-epoxy-7,8,9,10-tetra-hydrobenzo[a]pyrene. Chemical Research in Toxicology, 2004, 17, 330-339.	1.7	12
77	On stabilization of a neutral aromatic ligand by π–cation interactions in monoclonal antibodies. Biophysical Chemistry, 2011, 154, 35-40.	1.5	12
78	Electron Transfer in <i>Rhodobacter sphaeroides</i> Reaction Centers Containing Zn-Bacteriochlorophylls: A Hole-Burning Study. Journal of Physical Chemistry B, 2012, 116, 3457-3466.	1.2	12
79	Flow-through partial-filling affinity capillary electrophoresis using a crossreactive antibody for enantiomeric separations. Electrophoresis, 2006, 27, 1078-1083.	1.3	11
80	Integrated microfluidic device for the separation and electrochemical detection of catechol estrogen-derived DNA adducts. Analytical and Bioanalytical Chemistry, 2011, 399, 519-524.	1.9	11
81	Modeling of Optical Spectra of the Light-Harvesting CP29 Antenna Complex of Photosystem II—Part II. Journal of Physical Chemistry B, 2013, 117, 6593-6602.	1.2	11
82	On the Red Antenna States of Photosystem I Mutants from Cyanobacteria <i>Synechocystis</i> PCC 6803. Journal of Physical Chemistry B, 2020, 124, 8504-8515.	1.2	11
83	Identification and quantitation of benzo[a]pyrene-derived DNA adducts formed at low adduction level in mice lung tissue. Analytical Biochemistry, 2004, 334, 390-400.	1.1	10
84	Analytical formulas for low-fluence non-line-narrowed hole-burned spectra in an excitonically coupled dimer. Journal of Chemical Physics, 2009, 131, 234104.	1.2	10
85	Alternative Excitonic Structure in the Baseplate (BChl <i>a</i> –CsmA Complex) of the Chlorosome from <i>Chlorobaculum tepidum</i> . Journal of Physical Chemistry Letters, 2015, 6, 2702-2707.	2.1	10
86	Toward an Understanding of the Excitonic Structure of the CP47 Antenna Protein Complex of Photosystem II Revealed via Circularly Polarized Luminescence. Journal of Physical Chemistry B, 2017, 121, 4364-4378.	1.2	10
87	Excitonic Energy Landscape of the Y16F Mutant of the <i>Chlorobium tepidum</i> Fenna–Matthews–Olson (FMO) Complex: High Resolution Spectroscopic and Modeling Studies. Journal of Physical Chemistry B, 2018, 122, 3734-3743.	1.2	10
88	Separation and identification of DNA-carcinogen adduct conformers by polyacrylamide gel electrophoresis with laser-induced fluorescence detection. Analytical Chemistry, 1992, 64, 3038-3044.	3.2	9
89	High-Performance Liquid Chromatography Interfaced with Fluorescence Line-Narrowing Spectroscopy for On-Line Analysis. Analytical Chemistry, 2001, 73, 951-956.	3.2	9
90	Probing the Interaction of Benzo[a]pyrene Adducts and Metabolites with Monoclonal Antibodies Using Fluorescence Line-Narrowing Spectroscopy. Analytical Chemistry, 2004, 76, 761-766.	3.2	9

#	Article	IF	CITATIONS
91	Terrylene in hexadecane revisited: A hole burning study. Journal of Chemical Physics, 2007, 127, 084510.	1.2	9
92	Spectral Differentiation and Immunoaffinity Capillary Electrophoresis Separation of Enantiomeric Benzo(<i>a</i>)pyrene Diol Epoxide-Derived DNA Adducts. Chemical Research in Toxicology, 2007, 20, 1192-1199.	1.7	9
93	Fluid Mixing Control Inside a Y-shaped Microchannel by Using Electrokinetic Instability. Journal of Fluid Science and Technology, 2008, 3, 260-273.	0.2	9
94	Hyperquenched Glassy Water and Hyperquenched Glassy Ethanol Probed by Single Molecule Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 4303-4313.	1.2	9
95	Modeling study of non-line-narrowed hole-burned spectra in weakly coupled dimers and multi-chromophoric molecular assemblies. Chemical Physics, 2010, 367, 27-35.	0.9	9
96	Conformational Complexity in the LH2 Antenna of the Purple Sulfur Bacterium <i>Allochromatium vinosum</i> Revealed by Hole-Burning Spectroscopy. Journal of Physical Chemistry A, 2017, 121, 4435-4446.	1.1	9
97	Structure-Based Exciton Hamiltonian and Dynamics for the Reconstituted Wild-type CP29 Protein Antenna Complex of the Photosystem II. Journal of Physical Chemistry B, 2018, 122, 4611-4624.	1.2	9
98	Energy landscape of the intact and destabilized FMO antennas from C. tepidum and the L122Q mutant: Low temperature spectroscopy and modeling study. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 165-173.	0.5	9
99	Role of Bath Fluctuations in the Double-Excitation Manifold in Shaping the 2DES of Bacterial Reaction Centers at Low Temperature. Journal of Physical Chemistry B, 2018, 122, 1348-1366.	1.2	9
100	Impact of Single-Point Mutations on the Excitonic Structure and Dynamics in a Fenna–Matthews–Olson Complex. Journal of Physical Chemistry Letters, 2018, 9, 3378-3386.	2.1	9
101	High Resolution Spectral Differentiation of Enantiomers:  Benzo[a]Pyrene Tetrols Complexed with a Promiscuous Antibody. Journal of the American Chemical Society, 2006, 128, 6409-6413.	6.6	8
102	Comments on the optical lineshape function: Application to transient hole-burned spectra of bacterial reaction centers. Journal of Chemical Physics, 2015, 142, 094111.	1.2	8
103	Spectroscopic Characterization of the 4-Hydroxy Catechol Estrogen QuinonesDerived GSH and N-Acetylated Cys Conjugates. Chemical Research in Toxicology, 2003, 16, 304-311.	1.7	7
104	Direct Synthesis of Aqueous Quantum Dots through 4,4′-Bipyridine-Based Twin Ligand Strategy. Inorganic Chemistry, 2012, 51, 4521-4526.	1.9	6
105	Mutation-Induced Changes in the Protein Environment and Site Energies in the (M)L214G Mutant of the <i>Rhodobacter sphaeroides</i> Bacterial Reaction Center. Journal of Physical Chemistry B, 2016, 120, 7859-7871.	1.2	6
106	Low-Temperature Frequency Domain Study of Excitation Energy Transfer in Ethynyl-Linked Chlorophyll Trefoils and Aggregates. Journal of Physical Chemistry B, 2011, 115, 10391-10399.	1.2	5
107	Fluorescence line-narrowing difference spectra: Dependence of Huang–Rhys factor on excitation wavelength. Chemical Physics Letters, 2013, 576, 15-20.	1.2	5
108	Does the Singlet Minus Triplet Spectrum with Major Photobleaching Band Near 680–682 nm Represent an Intact Reaction Center of Photosystem II?. Journal of Physical Chemistry B, 2015, 119, 448-455.	1.2	5

#	Article	IF	CITATIONS
109	On Light-Induced Photoconversion of B800 Bacteriochlorophylls in the LH2 Antenna of the Purple Sulfur Bacterium <i>Allochromatium vinosum</i> . Journal of Physical Chemistry B, 2017, 121, 9999-10006.	1.2	5
110	Mixed Upper Exciton State of the Special Pair in Bacterial Reaction Centers. Journal of Physical Chemistry B, 2019, 123, 852-859.	1.2	5
111	Heterogeneous distributions and dispersive photodissociation rates of benzo[a]pyrene diol-epoxide enantiomer-DNA and -poly (dG-dC) · poly (dG-dC) adducts. Biophysical Chemistry, 1992, 42, 133-146.	1.5	4
112	Synthesis and structure determination of 6-methylbenzo[a]pyrene-deoxyribonucleoside adducts and their identification and quantitation in vitro and in mouse skin. Chemico-Biological Interactions, 2000, 128, 65-90.	1.7	4
113	On uncorrelated inter-monomer Förster energy transfer in Fenna–Matthews–Olson complexes. Journal of the Royal Society Interface, 2019, 16, 20180882.	1.5	4
114	Dichotomous Disorder versus Excitonic Splitting of the B800 Band of Allochromatium vinosum. Journal of Physical Chemistry Letters, 2018, 9, 4125-4129.	2.1	3
115	Modeling of fluorescence line-narrowed spectra in weakly coupled dimers in the presence of excitation energy transfer. Journal of Chemical Physics, 2014, 141, 035101.	1.2	2
116	Influence of Hydrogen Bonds on the Electron–Phonon Coupling Strength/Marker Mode Structure and Charge Separation Rates in Reaction Centers from Rhodobacter sphaeroides. Journal of Physical Chemistry B, 2019, 123, 8717-8726.	1.2	2
117	Conformations of Depurinating Adducts from Dibenzo[a,l]pyrene Diolepoxide. Polycyclic Aromatic Compounds, 1996, 10, 291-298.	1.4	1
118	Remembering Gerald J. Small (1941–2004), who tackled everything in life with an intense and enviable passion. Photosynthesis Research, 2005, 83, 5-9.	1.6	1
119	Impact of single point mutations on the excitonic structure and dynamics in FMO complex. EPJ Web of Conferences, 2018, 190, 02005.	0.1	1
120	How Well Does the Hole-Burning Action Spectrum Represent the Site-Distribution Function of the Lowest-Energy State in Photosynthetic Pigment–Protein Complexes?. Journal of Physical Chemistry B, 2019, 123, 6007-6013.	1.2	1
121	On Excitation Energy Transfer within the Baseplate BChl <i>a</i> –CsmA Complex of <i>Chloroflexus aurantiacus</i> . Journal of Physical Chemistry B, 2019, 123, 9786-9791.	1.2	1
122	Exciton Lifetime Distributions and Population Dynamics in the FMO Protein Complex from <i>Prosthecochloris aestuarii</i> . ACS Omega, 2021, 6, 5990-6008.	1.6	1
123	Fully Integrated Microfluidic Device with Carbon Sensing Electrode. , 2007, , .		0
124	Photovoltaics: Plasmonic Enhancement of Biosolar Cells Employing Light Harvesting Complex II Incorporated with Core-Shell Metal@TiO2Nanoparticles (Adv. Mater. Interfaces 15/2016). Advanced Materials Interfaces, 2016, 3, .	1.9	0
125	On wavelength-dependent exciton lifetime distributions in reconstituted CP29 antenna of the photosystem II and its site-directed mutants. Journal of Chemical Physics, 2021, 154, 085101.	1.2	0