Claudia Abbruzzese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8761364/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tackling the Behavior of Cancer Cells: Molecular Bases for Repurposing Antipsychotic Drugs in the Treatment of Glioblastoma. Cells, 2022, 11, 263.	1.8	10
2	Molecular Biology in Glioblastoma Multiforme Treatment. Cells, 2022, 11, 1850.	1.8	2
3	Anticancer Properties of the Antipsychotic Drug Chlorpromazine and Its Synergism With Temozolomide in Restraining Human Glioblastoma Proliferation In Vitro. Frontiers in Oncology, 2021, 11, 635472.	1.3	19
4	Chlorpromazine induces cytotoxic autophagy in glioblastoma cells via endoplasmic reticulum stress and unfolded protein response. Journal of Experimental and Clinical Cancer Research, 2021, 40, 347.	3.5	26
5	CTNI-12. PHASE II MULTICENTRIC ITALIAN TRIAL ON REPOSITIONING OF THE ANTIPSYCHOTIC DRUG CHLORPROMAZINE AND ITS SYNERGISM WITH TEMOZOLOMIDE IN MGMT UNMETHYLATED GLIOBLASTOMA PATIENTS: THE RACTAC TRIAL. Neuro-Oncology, 2021, 23, vi61-vi61.	0.6	0
6	The influence of patient sex on clinical approaches to malignant glioma. Cancer Letters, 2020, 468, 41-47.	3.2	20
7	Repurposing chlorpromazine in the treatment of glioblastoma multiforme: analysis of literature and forthcoming steps. Journal of Experimental and Clinical Cancer Research, 2020, 39, 26.	3.5	22
8	The kinase inhibitor SI113 induces autophagy and synergizes with quinacrine in hindering the growth of human glioblastoma multiforme cells. Journal of Experimental and Clinical Cancer Research, 2019, 38, 202.	3.5	26
9	The small molecule SI113 hinders epithelialâ€ŧoâ€mesenchymal transition and subverts cytoskeletal organization in human cancer cells. Journal of Cellular Physiology, 2019, 234, 22529-22542.	2.0	16
10	P11.51 Repurposing the antipsychotic chlorpromazine for the treatment of glioblastoma multiforme. Neuro-Oncology, 2019, 21, iii55-iii55.	0.6	0
11	Drug repurposing for the treatment of glioblastoma multiforme. Journal of Experimental and Clinical Cancer Research, 2017, 36, 169.	3.5	58
12	The small molecule SI113 synergizes with mitotic spindle poisons in arresting the growth of human glioblastoma multiforme. Oncotarget, 2017, 8, 110743-110755.	0.8	20
13	SI113, a SGK1 inhibitor, potentiates the effects of radiotherapy, modulates the response to oxidative stress and induces cytotoxic autophagy in human glioblastoma multiforme cells. Oncotarget, 2016, 7, 15868-15884.	0.8	54
14	Interaction between the human papillomavirus 16 E7 oncoprotein and gelsolin ignites cancer cell motility and invasiveness. Oncotarget, 2016, 7, 50972-50985.	0.8	9
15	Hepatitis C virus core protein modulates pRb2/p130 expression in human hepatocellular carcinoma cell lines through promoter methylation. Journal of Experimental and Clinical Cancer Research, 2015, 34, 140.	3.5	22
16	Long Term Exposure to Polyphenols of Artichoke (Cynara scolymusL.) Exerts Induction of Senescence Driven Growth Arrest in the MDA-MB231 Human Breast Cancer Cell Line. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-11.	1.9	36
17	Detection of Phosphorylated Insulin Receptor in Colorectal Adenoma and Adenocarcinoma: Implications for Prognosis and Clinical Outcome. Journal of Cellular Physiology, 2015, 230, 562-567.	2.0	18
18	SI113, a Specific Inhibitor of the Sgk1 Kinase Activity that Counteracts Cancer Cell Proliferation. Cellular Physiology and Biochemistry, 2015, 35, 2006-2018.	1.1	53

CLAUDIA ABBRUZZESE

#	Article	IF	CITATIONS
19	Preclinical model in HCC: the SGK1 kinase inhibitor SI113 blocks tumor progression <i>in vitro</i> and <i>in vivo</i> and synergizes with radiotherapy. Oncotarget, 2015, 6, 37511-37525.	0.8	55
20	Identification of Pivotal Cellular Factors Involved in HPVâ€Induced Dysplastic and Neoplastic Cervical Pathologies. Journal of Cellular Physiology, 2014, 229, 463-470.	2.0	8
21	The human papillomavirus-16 E7 oncoprotein exerts antiapoptotic effects via its physical interaction with the actin-binding protein gelsolin. Carcinogenesis, 2013, 34, 2424-2433.	1.3	9
22	Determination of SGK1 mRNA in non-small cell lung cancer samples underlines high expression in squamous cell carcinomas. Journal of Experimental and Clinical Cancer Research, 2012, 31, 4.	3.5	62
23	Overexpression of YAP1 induces immortalization of normal human keratinocytes by blocking clonal evolution. Histochemistry and Cell Biology, 2010, 134, 265-276.	0.8	15
24	Gender-related disparities in non-small cell lung cancer. Cancer Letters, 2010, 298, 1-8.	3.2	33
25	Human Papillomavirus-16 E7 Interacts with Glutathione S-Transferase P1 and Enhances Its Role in Cell Survival. PLoS ONE, 2009, 4, e7254.	1.1	30
26	Intracellular presence of insulin and its phosphorylated receptor in nonâ€small cell lung cancer. Journal of Cellular Physiology, 2009, 221, 766-770.	2.0	17
27	Human papillomavirus-16 E7 interacts with siva-1 and modulates apoptosis in HaCaT human immortalized keratinocytes. Journal of Cellular Physiology, 2007, 212, 118-125.	2.0	29
28	Inactivation of p16 INK4a (inhibitor of cyclinâ€dependent kinase 4A) immortalizes primary human keratinocytes by maintaining cells in the stem cell compartment. FASEB Journal, 2006, 20, 1516-1518.	0.2	44
29	Novel mutations in the CHST6 gene causing macular corneal dystrophy. Clinical Genetics, 2004, 65, 120-125.	1.0	21
30	Instability of a premutation allele in homozygous patients with myotonic dystrophy type 1. Annals of Neurology, 2002, 52, 435-441.	2.8	19
31	New nomenclature and DNA testing guidelines for myotonic dystrophy type 1 (DM1). Neurology, 2000, 54, 1218-1221.	1.5	203
32	AFM/MDA 1st International Myotonic Dystrophy Consortium Conference. Neuromuscular Disorders, 1998, 8, 432-437.	0.3	4
33	Myotonic dystrophy phenotype without expansion of (CTG)n repeat: An entity distinct from proximal myotonic myopathy (PROMM)?. Journal of Neurology, 1996, 243, 715-721.	1.8	25
34	NAD+/NADP+-Dependent Malic Enzyme: Evidence of a NADP+ Preferring Activity in Human Skeletal Muscle. Biochemical and Molecular Medicine, 1995, 56, 14-18.	1.5	3
35	Effect of Myotonic Dystrophy Trinucleotide Repeat Expansion on DMPK Transcription and Processing. Genomics, 1995, 28, 1-14.	1.3	135
36	Focus The dynamic genomics of myotonic dystrophy and its clinical relevance: an overview. Biomedicine and Pharmacotherapy, 1993, 47, 321-330.	2.5	5