Joel K W Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8760968/publications.pdf Version: 2024-02-01

LOFI K W YANG

#	Article	IF	CITATIONS
1	Printing colour at the optical diffraction limit. Nature Nanotechnology, 2012, 7, 557-561.	15.6	800
2	Graphoepitaxy of Self-Assembled Block Copolymers on Two-Dimensional Periodic Patterned Templates. Science, 2008, 321, 939-943.	6.0	760
3	Plasmonic colour generation. Nature Reviews Materials, 2017, 2, .	23.3	620
4	Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures. Nano Letters, 2014, 14, 4023-4029.	4.5	501
5	Nanoplasmonics: Classical down to the Nanometer Scale. Nano Letters, 2012, 12, 1683-1689.	4.5	389
6	Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions. Science, 2014, 343, 1496-1499.	6.0	388
7	Kinetic-inductance-limited reset time of superconducting nanowire photon counters. Applied Physics Letters, 2006, 88, 111116.	1.5	358
8	Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating. Optics Express, 2006, 14, 527.	1.7	350
9	Three-dimensional plasmonic stereoscopic prints in full colour. Nature Communications, 2014, 5, 5361.	5.8	269
10	Color generation <i>via</i> subwavelength plasmonic nanostructures. Nanoscale, 2015, 7, 6409-6419.	2.8	262
11	High-Resolution Mapping of Electron-Beam-Excited Plasmon Modes in Lithographically Defined Gold Nanostructures. Nano Letters, 2011, 11, 1323-1330.	4.5	253
12	Complex self-assembled patterns using sparse commensurate templates with locally varying motifs. Nature Nanotechnology, 2010, 5, 256-260.	15.6	245
13	Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures. Nature Communications, 2016, 7, 11283.	5.8	244
14	Printing Beyond sRGB Color Gamut by Mimicking Silicon Nanostructures in Free-Space. Nano Letters, 2017, 17, 7620-7628.	4.5	239
15	Direct and Reliable Patterning of Plasmonic Nanostructures with Sub-10-nm Gaps. ACS Nano, 2011, 5, 7593-7600.	7.3	231
16	Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nature Communications, 2019, 10, 25.	5.8	208
17	Wide Bandgap Phase Change Material Tuned Visible Photonics. Advanced Functional Materials, 2019, 29, 1806181.	7.8	192
18	Noninterleaved Metasurface for (2 ⁶ -1) Spin- and Wavelength-Encoded Holograms. Nano Letters, 2018, 18, 8016-8024.	4.5	187

#	Article	IF	CITATIONS
19	Structural color three-dimensional printing by shrinking photonic crystals. Nature Communications, 2019, 10, 4340.	5.8	184
20	Silicon multiâ€metaâ€holograms for the broadband visible light. Laser and Photonics Reviews, 2016, 10, 500-509.	4.4	181
21	Nanophotonic Structural Colors. ACS Photonics, 2021, 8, 18-33.	3.2	181
22	Modeling the Electrical and Thermal Response of Superconducting Nanowire Single-Photon Detectors. IEEE Transactions on Applied Superconductivity, 2007, 17, 581-585.	1.1	174
23	Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography. Journal of Vacuum Science & Technology B, 2007, 25, 2025-2029.	1.3	167
24	Constriction-limited detection efficiency of superconducting nanowire single-photon detectors. Applied Physics Letters, 2007, 90, 101110.	1.5	163
25	781 Mbit/s photon-counting optical communications using a superconducting nanowire detector. Optics Letters, 2006, 31, 444.	1.7	161
26	Plasmon-Modulated Photoluminescence of Individual Gold Nanostructures. ACS Nano, 2012, 6, 10147-10155.	7.3	157
27	Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography. Journal of Vacuum Science & Technology B, 2009, 27, 2622-2627.	1.3	148
28	Optical properties of superconducting nanowire single-photon detectors. Optics Express, 2008, 16, 10750.	1.7	146
29	Surface Plasmon Damping Quantified with an Electron Nanoprobe. Scientific Reports, 2013, 3, 1312.	1.6	133
30	Electrothermal feedback in superconducting nanowire single-photon detectors. Physical Review B, 2009, 79, .	1.1	132
31	Upconversion superburst with sub-2 μs lifetime. Nature Nanotechnology, 2019, 14, 1110-1115.	15.6	130
32	Metasurface-Driven Optically Variable Devices. Chemical Reviews, 2021, 121, 13013-13050.	23.0	125
33	Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors. Journal of Modern Optics, 2009, 56, 364-373.	0.6	122
34	Layer-By-Layer Assembly of Ag Nanowires into 3D Woodpile-like Structures to Achieve High Density "Hot Spots―for Surface-Enhanced Raman Scattering. Langmuir, 2013, 29, 7061-7069.	1.6	116
35	Fowler–Nordheim Tunneling Induced Charge Transfer Plasmons between Nearly Touching Nanoparticles. ACS Nano, 2013, 7, 707-716.	7.3	114
36	Multi-Element Superconducting Nanowire Single-Photon Detector. IEEE Transactions on Applied Superconductivity, 2007, 17, 279-284.	1.1	113

#	Article	IF	CITATIONS
37	Tunable Resonatorâ€Upconverted Emission (TRUE) Color Printing and Applications in Optical Security. Advanced Materials, 2019, 31, e1807900.	11.1	111
38	Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers. Nature Communications, 2021, 12, 112.	5.8	102
39	Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates. ACS Nano, 2018, 12, 1859-1867.	7.3	97
40	Encapsulated Annealing: Enhancing the Plasmon Quality Factor in Lithographically–Defined Nanostructures. Scientific Reports, 2014, 4, 5537.	1.6	96
41	Scanning-helium-ion-beam lithography with hydrogen silsesquioxane resist. Journal of Vacuum Science & Technology B, 2009, 27, 2702-2706.	1.3	95
42	Sub-10-nm half-pitch electron-beam lithography by using poly(methyl methacrylate) as a negative resist. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C6C58-C6C62.	0.6	86
43	Second-Harmonic Generation from Sub-5 nm Gaps by Directed Self-Assembly of Nanoparticles onto Template-Stripped Gold Substrates. Nano Letters, 2015, 15, 5976-5981.	4.5	86
44	Rewritable color nanoprints in antimony trisulfide films. Science Advances, 2020, 6, .	4.7	86
45	Si-containing block copolymers for self-assembled nanolithography. Journal of Vacuum Science & Technology B, 2008, 26, 2489-2494.	1.3	82
46	Dielectric multi-momentum meta-transformer in the visible. Nature Communications, 2019, 10, 4789.	5.8	82
47	Large Area Plasmonic Color Palettes with Expanded Gamut Using Colloidal Self-Assembly. ACS Photonics, 2016, 3, 627-633.	3.2	81
48	Sub-10 nm Nanoimprint Lithography by Wafer Bowing. Nano Letters, 2008, 8, 3865-3869.	4.5	75
49	A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO ₂ . Nanoscale, 2016, 8, 327-332.	2.8	74
50	Wide-Gamut Plasmonic Color Palettes with Constant Subwavelength Resolution. ACS Nano, 2019, 13, 3580-3588.	7.3	74
51	Tunable, Costâ€Effective, and Scalable Structural Colors for Sensing and Consumer Products. Advanced Optical Materials, 2019, 7, 1900735.	3.6	63
52	Electron-Energy Loss Study of Nonlocal Effects in Connected Plasmonic Nanoprisms. ACS Nano, 2013, 7, 6287-6296.	7.3	62
53	Highly Directive Hybrid Metal–Dielectric Yagi-Uda Nanoantennas. ACS Nano, 2018, 12, 8616-8624.	7.3	61
54	Toward Near-Perfect Diffractive Optical Elements <i>via</i> Nanoscale 3D Printing. ACS Nano, 2020, 14, 10452-10461.	7.3	61

#	Article	IF	CITATIONS
55	Wideband Absorbers in the Visible with Ultrathin Plasmonic-Phase Change Material Nanogratings. Journal of Physical Chemistry C, 2016, 120, 12713-12722.	1.5	60
56	Stepwise-Nanocavity-Assisted Transmissive Color Filter Array Microprints. Research, 2018, 2018, 8109054.	2.8	60
57	Enhanced Ordering in Gold Nanoparticles Self-Assembly through Excess Free Ligands. Langmuir, 2011, 27, 3355-3360.	1.6	57
58	Limiting factors in sub-10â€,nm scanning-electron-beam lithography. Journal of Vacuum Science & Technology B, 2009, 27, 2616.	1.3	55
59	Fabrication and characterization of bit-patterned media beyond 1.5 Tbit/in ² . Nanotechnology, 2011, 22, 385301.	1.3	55
60	A circuit model for plasmonic resonators. Optics Express, 2014, 22, 9809.	1.7	54
61	From 1D to 3D: Tunable Subâ€10 nm Gaps in Large Area Devices. Advanced Materials, 2016, 28, 2956-2963.	11.1	53
62	Schrödinger's red pixel by quasi-bound-states-in-the-continuum. Science Advances, 2022, 8, eabm4512.	4.7	53
63	Voltage-gated optics and plasmonics enabled by solid-state proton pumping. Nature Communications, 2019, 10, 5030.	5.8	51
64	Fabrication Development for Nanowire GHz-Counting-Rate Single-Photon Detectors. IEEE Transactions on Applied Superconductivity, 2005, 15, 626-630.	1.1	50
65	Comparative Study of Plasmonic Colors from All-Metal Structures of Posts and Pits. ACS Photonics, 2016, 3, 1000-1009.	3.2	49
66	Multiphoton Upconversion Enhanced by Deep Subwavelength Near-Field Confinement. Nano Letters, 2021, 21, 3044-3051.	4.5	48
67	Asymmetric parametric generation of images with nonlinear dielectric metasurfaces. Nature Photonics, 2022, 16, 561-565.	15.6	45
68	Controlled Collapse of Highâ€Aspectâ€Ratio Nanostructures. Small, 2011, 7, 2661-2668.	5.2	44
69	Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array. Nanoscale, 2014, 6, 12303-12309.	2.8	43
70	Sub-15nm nanoimprint molds and pattern transfer. Journal of Vacuum Science & Technology B, 2009, 27, 2837-2840.	1.3	42
71	Large Area Directed Self-Assembly of Sub-10 nm Particles with Single Particle Positioning Resolution. Nano Letters, 2015, 15, 6066-6070.	4.5	42
72	All-metal nanostructured substrates as subtractive color reflectors with near-perfect absorptance. Optics Express, 2015, 23, 32597.	1.7	41

#	Article	IF	CITATIONS
73	Accurate Modeling of Dark-Field Scattering Spectra of Plasmonic Nanostructures. ACS Nano, 2015, 9, 10039-10046.	7.3	41
74	Ultraviolet Interband Plasmonics With Si Nanostructures. Nano Letters, 2019, 19, 8040-8048.	4.5	41
75	Room-temperature mid-infrared photodetector in all-carbon graphene nanoribbon-C_60 hybrid nanostructure. Optica, 2016, 3, 979.	4.8	40
76	Complex Inverse Design of Meta-optics by Segmented Hierarchical Evolutionary Algorithm. ACS Nano, 2019, 13, 821-829.	7.3	40
77	Reversible Tuning of Mie Resonances in the Visible Spectrum. ACS Nano, 2021, 15, 19722-19732.	7.3	40
78	Sub-10 nm patterning of gold nanostructures on silicon-nitride membranes for plasmon mapping with electron energy-loss spectroscopy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C6O45-C6O49.	0.6	39
79	Metrology for electron-beam lithography and resist contrast at the sub-10 nm scale. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C6H11-C6H17.	0.6	38
80	Enhancing the Potential of Block Copolymer Lithography with Polymer Self-Consistent Field Theory Simulations. Macromolecules, 2010, 43, 8290-8295.	2.2	38
81	Direct Color Printing with an Electron Beam. Nano Letters, 2020, 20, 4422-4429.	4.5	38
82	Electrically-Excited Surface Plasmon Polaritons with Directionality Control. ACS Photonics, 2015, 2, 385-391.	3.2	34
83	Full Color and Grayscale Painting with 3D Printed Low-Index Nanopillars. Nano Letters, 2021, 21, 4721-4729.	4.5	34
84	Single‣ayer Aberration ompensated Flat Lens for Robust Wideâ€Angle Imaging. Laser and Photonics Reviews, 2020, 14, 2000017.	4.4	33
85	Dynamically configurable hybridization of plasmon modes in nanoring dimer arrays. Nanoscale, 2015, 7, 12018-12022.	2.8	32
86	On the correlation of absorption cross-section with plasmonic color generation. Optics Express, 2017, 25, 27652.	1.7	31
87	Directed Self-Assembly of Densely Packed Gold Nanoparticles. Langmuir, 2012, 28, 16782-16787.	1.6	30
88	Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas. Nanotechnology, 2013, 24, 185301.	1.3	30
89	Offâ€Axis Holography with Uniform Illumination via 3D Printed Diffractive Optical Elements. Advanced Optical Materials, 2019, 7, 1900068.	3.6	30
90	In-plane coherent control of plasmon resonances for plasmonic switching and encoding. Light: Science and Applications, 2019, 8, 21.	7.7	29

#	Article	IF	CITATIONS
91	High-resolution light field prints by nanoscale 3D printing. Nature Communications, 2021, 12, 3728.	5.8	29
92	Reconfiguring Colors of Single Relief Structures by Directional Stretching. Advanced Materials, 2022, 34, e2108128.	11.1	29
93	Programmable chalcogenide-based all-optical deep neural networks. Nanophotonics, 2022, 11, 4073-4088.	2.9	29
94	Nanoscale mapping of optically inaccessible bound-states-in-the-continuum. Light: Science and Applications, 2022, 11, 20.	7.7	28
95	1.25-Gbit/s photon-counting optical communications using a two-element superconducting nanowire single photon detector. , 2006, 6372, 286.		27
96	Stacking of colors in exfoliable plasmonic superlattices. Nanoscale, 2016, 8, 18228-18234.	2.8	27
97	Contrast enhancement behavior of hydrogen silsesquioxane in a salty developer. Journal of Vacuum Science & Technology B, 2009, 27, 2635-2639.	1.3	26
98	Template-Induced Structure Transition in Sub-10 nm Self-Assembling Nanoparticles. Nano Letters, 2014, 14, 2642-2646.	4.5	26
99	Nanoscale spirals by directed self-assembly. Nano Futures, 2017, 1, 015001.	1.0	26
100	Sub-10-nm suspended nano-web formation by direct laser writing. Nano Futures, 2018, 2, 025006.	1.0	26
101	Inâ€Plane Directâ€Write Assembly of Iridescent Colloidal Crystals. Small, 2020, 16, e1905519.	5.2	26
102	Acoustic Vibrationâ€Induced Actuation of Multiple Microrotors in Microfluidics. Advanced Materials Technologies, 2020, 5, 2000323.	3.0	25
103	Suppressed Critical Current in Superconducting Nanowire Single-Photon Detectors With High Fill-Factors. IEEE Transactions on Applied Superconductivity, 2009, 19, 318-322.	1.1	24
104	High-Order Photonic Cavity Modes Enabled 3D Structural Colors. ACS Nano, 2022, 16, 8244-8252.	7.3	24
105	Rotation-Selective Moiré Magnification of Structural Color Pattern Arrays. ACS Nano, 2019, 13, 14138-14144.	7.3	23
106	Directed Self-Assembly of sub-10 nm Particles: Role of Driving Forces and Template Geometry in Packing and Ordering. Langmuir, 2015, 31, 8548-8557.	1.6	22
107	Probing Vertical and Horizontal Plasmonic Resonant States in the Photoluminescence of Gold Nanodisks. ACS Photonics, 2015, 2, 1217-1223.	3.2	22
108	Room temperature Coulomb blockade effects in Au nanocluster/pentacene single electron transistors. Nanotechnology, 2015, 26, 355204.	1.3	22

#	Article	IF	CITATIONS
109	Anomalous Shift Behaviors in the Photoluminescence of Dolmen-Like Plasmonic Nanostructures. ACS Photonics, 2016, 3, 979-984.	3.2	22
110	Patterned resist on flat silver achieving saturated plasmonic colors with sub-20-nm spectral linewidth. Materials Today, 2020, 35, 99-105.	8.3	21
111	Darkfield colors from multi-periodic arrays of gap plasmon resonators. Nanophotonics, 2020, 9, 533-545.	2.9	21
112	Optical Fireworks Based on Multifocal Three-Dimensional Color Prints. ACS Nano, 2021, 15, 10185-10193.	7.3	21
113	Silicon Nanoantenna Mix Arrays for a Trifecta of Quantum Emitter Enhancements. Nano Letters, 2021, 21, 4853-4860.	4.5	21
114	Photoluminescence via gap plasmons between single silver nanowires and a thin gold film. Nanoscale, 2013, 5, 12086.	2.8	20
115	Nanostructure Formation by controlled dewetting on patterned substrates: A combined theoretical, modeling and experimental study. Scientific Reports, 2016, 6, 32398.	1.6	20
116	Surface-Enhanced Infrared Absorption Spectroscopy Using Charge Transfer Plasmons. ACS Photonics, 2019, 6, 1272-1278.	3.2	20
117	3D printed fiber sockets for plug and play micro-optics. International Journal of Extreme Manufacturing, 2021, 3, 015301.	6.3	20
118	Hierarchical Colorful Structures by Three-Dimensional Printing of Inverse Opals. Nano Letters, 2021, 21, 8602-8608.	4.5	20
119	Enhancing etch resistance of hydrogen silsesquioxane via postdevelop electron curing. Journal of Vacuum Science & Technology B, 2006, 24, 3157.	1.3	19
120	High aspect ratio 10-nm-scale nanoaperture arrays with template-guided metal dewetting. Scientific Reports, 2015, 5, 9654.	1.6	18
121	Chalcogenide active photonics. , 2017, , .		18
122	Charge transfer plasmon resonances across silver–molecule–silver junctions: estimating the terahertz conductance of molecules at near-infrared frequencies. RSC Advances, 2016, 6, 70884-70894.	1.7	17
123	Micro-tags for art: covert visible and infrared images using gap plasmons in native aluminum oxide. Optical Materials Express, 2019, 9, 788.	1.6	17
124	Direct excitation of dark plasmonic resonances under visible light at normal incidence. Nanoscale, 2014, 6, 2106-2111.	2.8	16
125	Fabrication of suspended metal–dielectric–metal plasmonic nanostructures. Nanotechnology, 2014, 25, 135303.	1.3	16
126	Directed self-assembly of sub-10 nm particle clusters using topographical templates. Nanotechnology, 2016, 27, 424001.	1.3	16

#	Article	IF	CITATIONS
127	Are phase change materials ideal for programmable photonics?: opinion. Optical Materials Express, 2022, 12, 2368.	1.6	16
128	Fabrication and Characterization of Suspended Uniaxial Tensile Strained-Si Nanowires for Gate-All-Around Nanowire n-MOSFETs. ECS Transactions, 2008, 16, 57-68.	0.3	15
129	Plasmon excitation on flat graphene by s-polarized beams using four-wave mixing. Optics Express, 2015, 23, 7809.	1.7	13
130	Applying Machine Learning to the Optics of Dielectric Nanoblobs. Advanced Photonics Research, 2020, 1, 2000068.	1.7	11
131	A Modular Design of Continuously Tunable Full Color Plasmonic Pixels with Broken Rotational Symmetry. Advanced Functional Materials, 2022, 32, 2108437.	7.8	11
132	Templated self-assembly of Si-containing block copolymers for nanoscale device fabrication. Proceedings of SPIE, 2010, , .	0.8	9
133	Bio-inspired Photonic Masquerade with Perturbative Metasurfaces. ACS Nano, 2020, 14, 7529-7537.	7.3	9
134	<i>In situ</i> study of hydrogen silsesquioxane dissolution rate in salty and electrochemical developers. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 06FJ01.	0.6	8
135	ENGINEERING PLASMONIC COLORS IN METAL NANOSTRUCTURES. Journal of Molecular and Engineering Materials, 2014, 02, 1440011.	0.9	7
136	Image Dipole Method for the Beaming of Plasmons from Point Sources. ACS Photonics, 2014, 1, 1307-1312.	3.2	7
137	Energy transfer and depolarization in the photoluminescence of a plasmonic molecule. Nanoscale, 2017, 9, 2082-2087.	2.8	7
138	Electrochemical development of hydrogen silsesquioxane by applying an electrical potential. Nanotechnology, 2011, 22, 375301.	1.3	6
139	A facile approach for screening isolated nanomagnetic behavior for bit-patterned media. Nanotechnology, 2014, 25, 225203.	1.3	6
140	Pattern Generation by Using Multistep Room-Temperature Nanoimprint Lithography. IEEE Nanotechnology Magazine, 2007, 6, 639-644.	1.1	5
141	Demonstration of gigabit-per-second and higher data rates at extremely high efficiency using superconducting nanowire single photon detectors. , 2007, , .		5
142	Effect of inter-bit material on the performance of directly deposited bit patterned media. Applied Physics Letters, 2012, 101, .	1.5	5
143	Determination of Position Jitter and Dot-Size Fluctuations in Patterned Arrays Fabricated by the Directed Self-Assembly of Gold Nanoparticles. IEEE Transactions on Magnetics, 2014, 50, 51-55.	1.2	5
144	3D Printing Mesoscale Optical Components with a Low-Cost Resin Printer Integrated with a Fiber-Optic Taper. ACS Photonics, 2022, 9, 2024-2031.	3.2	5

0

#	Article	IF	CITATIONS
145	High-data-rate photon-counting optical communications using a NbN-nanowire superconducting detector. , 2006, , .		4
146	Miniaturization of grayscale images. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	0.6	4
147	Comparison of bit-patterned media fabricated by methods of direct deposition and ion-milling of cobalt/palladium multilayers. Journal of Applied Physics, 2012, 111, .	1.1	4
148	A study on dynamic heat assisted magnetization reversal mechanisms under insufficient reversal field conditions. Applied Physics Letters, 2014, 105, .	1.5	4
149	Second order directed positioning of nanoparticles induced by the main terminal meniscus shape in irregular template cavities. Nanoscale, 2017, 9, 9886-9892.	2.8	4
150	Plasmon-Assisted Zone-Selective Repair of Nanoscale Electrical Breakdown Paths in Metal/Oxide/Metal Structures for Near-Field Optical Sensing. ACS Applied Nano Materials, 2018, 1, 4340-4350.	2.4	4
151	Secure Printing: Tunable Resonatorâ€Upconverted Emission (TRUE) Color Printing and Applications in Optical Security (Adv. Mater. 15/2019). Advanced Materials, 2019, 31, 1970106.	11.1	4
152	Plasma-assisted filling electron beam lithography for high throughput patterning of large area closed polygon nanostructures. Nanoscale, 2020, 12, 10584-10591.	2.8	4
153	Molecular Materials Meeting (M3@Singapore). Australian Journal of Chemistry, 2011, 64, 1181.	0.5	3
154	Channel Characterization and Performance Evaluation of Bit-Patterned Media. IEEE Transactions on Magnetics, 2013, 49, 723-729.	1.2	3
155	Large-Aperture and Grain-Boundary Engineering through Template-Assisted Metal Dewetting for Resonances in the Short Wave Infrared. ACS Photonics, 2018, 5, 511-519.	3.2	2
156	Design, Manufacture, and Analysis of Photonic Materials for Historical and Modern Visual Art: feature issue introduction. Optical Materials Express, 2019, 9, 2128.	1.6	2
157	Increased detection efficiencies of nanowire single-photon detectors by integration of an optical cavity and anti-reflection coating. , 2006, , .		1
158	Achieving high counting rates in superconducting nanowire single-photon detectors. , 2006, , .		0
159	Optimization of Bit-Patterned Media Recording (BPMR) System via Tolerance Design. IEEE Transactions on Magnetics, 2013, 49, 3624-3627.	1.2	0

160 Plasmonic color printing. , 2015, , .