
Stefan Preussler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8760548/publications.pdf Version: 2024-02-01

STEEAN DDELISSIED

#	Article	IF	CITATIONS
1	Photonic Microwave Frequency Measurement With High Accuracy and Sub-MHz Resolution. Journal of Lightwave Technology, 2022, 40, 2748-2753.	4.6	13
2	High-Bandwidth Arbitrary Signal Detection Using Low-Speed Electronics. IEEE Photonics Journal, 2022, 14, 1-7.	2.0	13
3	Emulation of integrated high-bandwidth photonic AWG using low-speed electronics. , 2022, , .		1
4	Analysis of the effect of jitter and non-idealities on photonic digital-to-analog converters based on Nyquist pulses. , 2022, , .		0
5	Compact and Energy-Efficient Forward-Biased PN Silicon Mach-Zehnder Modulator. IEEE Photonics Journal, 2022, 14, 1-7.	2.0	5
6	Reconfigurable and real-time high-bandwidth Nyquist signal detection with low-bandwidth in silicon photonics. Optics Express, 2022, 30, 13776.	3.4	11
7	Modulation Format Aggregation of Nyquist channels by Spectral Superposition with Electro-Optic Modulators. , 2022, , .		3
8	High-speed Silicon Mach-Zehnder Modulator with Corrugated Waveguides for Data Center Interconnects. , 2021, , .		1
9	Agnostic sampling transceiver. Optics Express, 2021, 29, 14828.	3.4	19
10	Roll-Off Factor Analysis of Optical Nyquist Pulses Generated by an On-Chip Mach-Zehnder Modulator. IEEE Photonics Technology Letters, 2021, 33, 1189-1192.	2.5	10
11	High Modulation Efficiency Segmented Mach-Zehnder Modulator Monolithically Integrated with Linear Driver in 0.25 µm BiCMOS Technology. , 2021, , .		3
12	Optical PRBS Generation with Threefold Bandwidth of the Employed Electronics and Photonics. , 2021, , .		1
13	Modulator-based sinc-sequence sampled time and frequency multiplexed QAM signal transmission. , 2021, , .		0
14	Integrated High-Resolution Optical Spectrum Analyzer With Broad Operational Bandwidth. IEEE Photonics Technology Letters, 2020, 32, 1061-1064.	2.5	5
15	Photonic Arbitrary Waveform Generation With Three Times the Sampling Rate of the Modulator Bandwidth. IEEE Photonics Technology Letters, 2020, 32, 1544-1547.	2.5	15
16	Nyquist Data Transmission with Threefold Bandwidth of the Utilized Modulator. , 2020, , .		1
17	Measurement Accuracy Enhancement via Radio Frequency Filtering in Distributed Brillouin Sensing. Sensors, 2019, 19, 2878.	3.8	14
18	Nonlinearity- and dispersion- less integrated optical time magnifier based on a high-Q SiN microring resonator. Scientific Reports, 2019, 9, 14277.	3.3	17

STEFAN PREUSSLER

#	Article	IF	CITATIONS
19	Photonic Components for Signal Generation and Distribution for Large Aperture Radar in Autonomous Driving. Frequenz, 2019, 73, 399-408.	0.9	Ο
20	Gain Spectrum Engineering in Distributed Brillouin Fiber Sensors. Journal of Lightwave Technology, 2019, 37, 5231-5237.	4.6	17
21	Orthogonal Full-Field Optical Sampling. IEEE Photonics Journal, 2019, 11, 1-9.	2.0	17
22	Optical Signal Generation and Distribution for Large Aperture Radar in Autonomous Driving. , 2019, , .		8
23	Modular Wideband High Angular Resolution 79 GHz Radar System. , 2019, , .		6
24	Photonically synchronized large aperture radar for autonomous driving. Optics Express, 2019, 27, 1199.	3.4	16
25	Integrated all optical sampling of microwave signals in silicon photonics. , 2019, , .		0
26	Integrated source-free all optical sampling with a sampling rate of up to three times the RF bandwidth of silicon photonic MZM. Optics Express, 2019, 27, 29972.	3.4	29
27	Optical convolution with a rectangular frequency comb for almost ideal sampling. , 2019, , .		5
28	Photonically synchronized radar for advanced driver assistance systems. , 2019, , .		0
29	Investigation of the Dispersion Effect on Stimulated Brillouin Scattering based Microwave Photonic Notch Filters. , 2018, , .		Ο
30	The Influence of Dispersion on Stimulated-Brillouin-Scattering-Based Microwave Photonic Notch Filters. Journal of Lightwave Technology, 2018, 36, 5145-5151.	4.6	13
31	Sharp tunable and additional noise-free optical filter based on Brillouin losses. Photonics Research, 2018, 6, 132.	7.0	37
32	Dispersion engineering with stimulated Brillouin scattering and applications. , 2018, , .		0
33	All-optical sampling without optical source. Proceedings of SPIE, 2017, , .	0.8	1
34	Frequency-time coherence for all-optical sampling without optical pulse source. Scientific Reports, 2016, 6, 34500.	3.3	25
35	Investigation of Gain Dependent Relative Intensity Noise in Fiber Brillouin Amplification. Journal of Lightwave Technology, 2016, 34, 3930-3936.	4.6	16
36	Combined Optical and Electrical Spectrum Shaping for High-Baud-Rate Nyquist-WDM Transceivers. IEEE Photonics Journal, 2016, 8, 1-11.	2.0	10

STEFAN PREUSSLER

#	Article	IF	CITATIONS
37	Ultra-high resolution spectroscopy of optical frequency combs. Proceedings of SPIE, 2016, , .	0.8	Ο
38	Frequency-Time Coherence for All-Optical Sampling. , 2016, , .		1
39	Attometer resolution spectral analysis based on polarization pulling assisted Brillouin scattering merged with heterodyne detection. Optics Express, 2015, 23, 26879.	3.4	27
40	Optical spectrum analysis with kHz resolution based on polarization pulling and local oscillator assisted Brillouin scattering. , 2015, , .		0
41	Generation of highly stable millimeter waves with low phase noise and narrow linewidth. , 2015, , .		Ο
42	Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing. Optical Engineering, 2015, 55, 031110.	1.0	43
43	Generation and Stabilization of THz-waves with Extraordinary Low Line Width and Phase Noise. , 2015, , .		Ο
44	Quasi-light Storage for Optical Data Packets. Journal of Visualized Experiments, 2014, , e50468.	0.3	1
45	Flexible Nyquist Pulse Sequence Generation With Variable Bandwidth and Repetition Rate. IEEE Photonics Journal, 2014, 6, 1-8.	2.0	32
46	Flat, rectangular frequency comb generation with tunable bandwidth and frequency spacing. Optics Letters, 2014, 39, 1637.	3.3	21
47	Ultra-narrow line-width, stable and widely tuneable laser source for coherent optical communication systems. , 2014, , .		2
48	Tunable generation of ultra-narrow linewidth millimeter and THz-waves and their modulation at 40 Gbd. , 2013, , .		1
49	Tunable microwave-photonic filter using frequency-to-time mapping-based delay lines. Optics Express, 2013, 21, 21702.	3.4	13
50	Generation of ultra-narrow, stable and tunable millimeter- and terahertz- waves with very low phase noise. Optics Express, 2013, 21, 23950.	3.4	42
51	Frequency domain aperture for the gain bandwidth reduction of stimulated Brillouin scattering. Optics Letters, 2012, 37, 930.	3.3	43
52	Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling. Optics Express, 2012, 20, 14734.	3.4	55
53	Bandwidth reduction in a multistage Brillouin system. Optics Letters, 2012, 37, 4122.	3.3	50
54	All optical tunable storage of phase-shift-keyed data packets. Optics Express, 2012, 20, 18224.	3.4	11

STEFAN PREUSSLER

#	Article	IF	CITATIONS
55	Increasing the Resolution of Optical Spectrometers for the Measurement of Advanced Optical Communication Signals. , 2012, , .		2
56	Link Budget Analysis for Terahertz Fixed Wireless Links. IEEE Transactions on Terahertz Science and Technology, 2012, 2, 250-256.	3.1	215
57	Maximum transmittable data rates for Millimeter-wave fixed wireless links. , 2012, , .		3
58	Methods for the enhancement of the storage time in Quasi-Light-Storage. , 2011, , .		0
59	Ultrahigh-Resolution Spectroscopy Based on the Bandwidth Reduction of Stimulated Brillouin Scattering. IEEE Photonics Technology Letters, 2011, 23, 1118-1120.	2.5	29
60	Managing the resolution bandwidth in Brillouin based spectroscopy. , 2011, , .		1
61	Quasi-light-storage enhancement by reducing the Brillouin gain bandwidth. Applied Optics, 2011, 50, 4252.	2.1	18
62	Brillouin scattering gain bandwidth reduction down to 34MHz. Optics Express, 2011, 19, 8565.	3.4	101
63	Almost distortion free storage of 1Gbps/8bit optical packets for up to 100 bit lengths. , 2010, , .		1
64	Quasi-Light Storage: A Method for the Tunable Storage of Optical Packets With a Potential Delay-Bandwidth Product of Several Thousand Bits. Journal of Lightwave Technology, 2010, 28, 2586-2592.	4.6	30
65	Nonlinear Brillouin based slow-light system for almost distortion-free pulse delay. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 544.	2.1	9
66	Zero-broadening measurement in Brillouin based slow-light delays. Optics Express, 2009, 17, 797.	3.4	21
67	Pulse broadening cancellation in cascaded slow-light delays. Optics Express, 2009, 17, 7586.	3.4	12
68	Quasi-Light-Storage based on time-frequency coherence. Optics Express, 2009, 17, 15790.	3.4	49
69	Gain enhancement in multiple-pump-line Brillouin-based slow light systems by using fiber segments and filter stages. Applied Optics, 2009, 48, 5583.	2.1	0