Suvardhan Kanchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8760343/publications.pdf

Version: 2024-02-01

92 papers

2,561 citations

346980 22 h-index 232693 48 g-index

99 all docs 99 docs citations

99 times ranked 4033 citing authors

#	Article	IF	CITATIONS
1	Effective adsorption of Fuchsine dye on FeZnOAC: kinetic, isotherm, double-layer modelling and reusability study. International Journal of Environmental Analytical Chemistry, 2023, 103, 3954-3970.	1.8	6
2	Double-layer modelling and physicochemical parameters interpretation for chromium adsorption on ZnMnOAC nanocomposite. Inorganic and Nano-Metal Chemistry, 2023, 53, 228-238.	0.9	3
3	Low dimensional Bi2Se3 NPs/reduced graphene oxide nanocomposite for simultaneous detection of L-Dopa and acetaminophen in presence of ascorbic acid in biological samplesÂand pharmaceuticals. Journal of Nanostructure in Chemistry, 2022, 12, 513-528.	5.3	11
4	A Mini Review on Surface-Enhanced Raman Scattering based Nanoclusters for Sensing and Imaging Applications. Current Analytical Chemistry, 2022, 18, 430-439.	0.6	2
5	Adsorption of Cr(VI) on Ultrafine Al2O3-doped MnFe2O4 nanocomposite surface: Experimental and theoretical study using double-layer modeling. Journal of Physics and Chemistry of Solids, 2022, 163, 110544.	1.9	10
6	A novel IL-f-ZnONPs@MWCNTs nanocomposite fabricated glassy carbon electrode for the determination of sulfamethoxazole. Journal of Molecular Liquids, 2022, 359, 119232.	2.3	13
7	An ultra-sensitive laccase/polyaziridine-bismuth selenide nanoplates modified GCE for detection of atenolol in pharmaceuticals and urine samples. Bioelectrochemistry, 2022, 147, 108212.	2.4	6
8	Development of a ternerry condunting composite (PPy/Au/CNT@Fe3O4) immobilized FRT/GOD bioanode for glucose/oxygen biofuel cell applications. International Journal of Hydrogen Energy, 2021, 46, 3259-3269.	3.8	27
9	Smart Nanodevices for Point-of-Care Applications. Current Analytical Chemistry, 2021, 17, .	0.6	1
<u> </u>			the state of the s
10	Advanced applications of green materials in biosensor. , 2021, , 33-75.		0
10	Advanced applications of green materials in biosensor. , 2021, , 33-75. A Selective Ratiometric Receptor 2-((E)-(3-(prop-1-en-2-yl)phenylimino)methyl)-4-nitrophenol for the Detection of Cu2+Âions Supported By DFT Studies. Journal of Fluorescence, 2021, 31, 625-634.	1.3	0
	A Selective Ratiometric Receptor 2-((E)-(3-(prop-1-en-2-yl)phenylimino)methyl)-4-nitrophenol for the	1.3	0 4 10
11	A Selective Ratiometric Receptor 2-((E)-(3-(prop-1-en-2-yl)phenylimino)methyl)-4-nitrophenol for the Detection of Cu2+Âions Supported By DFT Studies. Journal of Fluorescence, 2021, 31, 625-634. Adsorption of Congo Red on Pb doped FexOy: experimental study and theoretical modeling via		4
11 12	A Selective Ratiometric Receptor 2-((E)-(3-(prop-1-en-2-yl)phenylimino)methyl)-4-nitrophenol for the Detection of Cu2+Âions Supported By DFT Studies. Journal of Fluorescence, 2021, 31, 625-634. Adsorption of Congo Red on Pb doped FexOy: experimental study and theoretical modeling via double-layer statistical physics models. Water Science and Technology, 2021, 83, 1714-1727. Measurement of TiO ₂ Nanoscale Ingredients in Sunscreens by Multidetector AF4, TEM, and	1.2	10
11 12 13	A Selective Ratiometric Receptor 2-((E)-(3-(prop-1-en-2-yl)phenylimino)methyl)-4-nitrophenol for the Detection of Cu2+Âions Supported By DFT Studies. Journal of Fluorescence, 2021, 31, 625-634. Adsorption of Congo Red on Pb doped FexOy: experimental study and theoretical modeling via double-layer statistical physics models. Water Science and Technology, 2021, 83, 1714-1727. Measurement of TiO ₂ Nanoscale Ingredients in Sunscreens by Multidetector AF4, TEM, and spICP-MS Supported by Computational Modeling. ACS Applied Nano Materials, 2021, 4, 4665-4675. Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by <i>i>in silico</i> i> methods. Pure	1.2 2.4	10
11 12 13	A Selective Ratiometric Receptor 2-((E)-(3-(prop-1-en-2-yl)phenylimino)methyl)-4-nitrophenol for the Detection of Cu2+Âions Supported By DFT Studies. Journal of Fluorescence, 2021, 31, 625-634. Adsorption of Congo Red on Pb doped FexOy: experimental study and theoretical modeling via double-layer statistical physics models. Water Science and Technology, 2021, 83, 1714-1727. Measurement of TiO ₂ Nanoscale Ingredients in Sunscreens by Multidetector AF4, TEM, and spICP-MS Supported by Computational Modeling. ACS Applied Nano Materials, 2021, 4, 4665-4675. Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by <i>in silico</i> i> methods. Pure and Applied Chemistry, 2021, 93, 1171-1180. Sensitivity Enhancement of Pre-Capillary Chelation Method for the Separation of Metal Ions:	1.2 2.4 0.9	4 10 11
11 12 13 14	A Selective Ratiometric Receptor 2-((E)-(3-(prop-1-en-2-yl)phenylimino)methyl)-4-nitrophenol for the Detection of Cu2+Åions Supported By DFT Studies. Journal of Fluorescence, 2021, 31, 625-634. Adsorption of Congo Red on Pb doped FexOy: experimental study and theoretical modeling via double-layer statistical physics models. Water Science and Technology, 2021, 83, 1714-1727. Measurement of TiO ₂ Nanoscale Ingredients in Sunscreens by Multidetector AF4, TEM, and spICP-MS Supported by Computational Modeling. ACS Applied Nano Materials, 2021, 4, 4665-4675. Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by <i>in silico</i> methods. Pure and Applied Chemistry, 2021, 93, 1171-1180. Sensitivity Enhancement of Pre-Capillary Chelation Method for the Separation of Metal Ions: Experimental and DFT Study. Current Analytical Chemistry, 2021, 17, 839-848. Removal of Targeted Pharmaceuticals and Personal Care Products from Wastewater Treatment Plants	1.2 2.4 0.9	4 10 11 1 0

#	Article	IF	CITATIONS
19	Hydrothermally synthesized defective NiMoSe2 nanoplates decorated on the surface of functionalized SWCNTs doped polypyrrole scaffold for enzymatic biofuel cell applications. International Journal of Hydrogen Energy, 2021, 46, 3240-3250.	3.8	11
20	Functionalized Electrochemical Aptasensor for Sensing of Ochratoxin A in Cereals Supported by <i>in Silico </i> Adsorption Studies. ACS Food Science & Technology, 2021, 1, 1849-1860.	1.3	2
21	High Performance Electrochemical Biosensor for Bisphenol A Using Screen Printed Electrodes Modified with Multiwalled Carbon Nanotubes Functionalized with Silver-Doped Zinc Oxide. Waste and Biomass Valorization, 2020, 11, 1085-1096.	1.8	32
22	One-pot biosynthesis of silver nanoparticle using Colocasia esculenta extract: Colorimetric detection of melamine in biological samples. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 391, 112310.	2.0	28
23	Highly-efficient electrochemical label-free immunosensor for the detection of ochratoxin A in coffee samples. Sensors and Actuators B: Chemical, 2020, 305, 127438.	4.0	49
24	Multivariate optimization of field-flow fractionation of nanoscale synthetic amorphous silica in processed foods supported by computational modelling. New Journal of Chemistry, 2020, 44, 17542-17551.	1.4	4
25	Electrochemical Enzymatic Biosensing of Neotame Supported by Computational Methods. Electroanalysis, 2020, 32, 2669-2680.	1.5	8
26	Experimental and Computational Studies of a Laccase Immobilized ZnONPs/GO-Based Electrochemical Enzymatic Biosensor for the Detection of Sucralose in Food Samples. Food Analytical Methods, 2020, 13, 2014-2027.	1.3	17
27	Current trends, achievements, and prospects of smart nanodevices in the global pharma market. , 2020, , 351-393.		0
28	An in-silico layer-by-layer adsorption study of the interaction between Rebaudioside A and the T1R2 human sweet taste receptor: modelling and biosensing perspectives. Scientific Reports, 2020, 10, 18391.	1.6	9
29	Simultaneous detection of ethambutol and pyrazinamide with IL@CoFe2O4NPs@MWCNTs fabricated glassy carbon electrode. Scientific Reports, 2020, 10, 13563.	1.6	23
30	Green synthesis of ZnO nanoparticles decorated on polyindole functionalized-MCNTs and used as anode material for enzymatic biofuel cell applications. Scientific Reports, 2020, 10, 5052.	1.6	60
31	Electrochemical Biosensor for the Detection of Amygdalin in Apple Seeds with a Hybrid of f-MWCNTs/CoFe2O4 Nanocomposite. Current Analytical Chemistry, 2020, 16, 660-668.	0.6	11
32	Nanotechnology-based water quality management for wastewater treatment. Environmental Chemistry Letters, 2019, 17, 65-121.	8.3	105
33	Novel on-site residual screening of poly-diallyldimethylammonium chloride in treated potable water using gold nanoparticle based lovibond color filters. Journal of the Taiwan Institute of Chemical Engineers, 2019, 101, 159-166.	2.7	7
34	Recent Trends in Sensors for Health and Agricultural Applications. , 2019, , 341-355.		6
35	Cholesterol-Based Enzymatic and Nonenzymatic Sensors. , 2019, , 315-339.		3
36	Computational studies on the molecular insights of aptamer induced poly(N-isopropylacrylamide)-graft-graphene oxide for on/off- switchable whole-cell cancer diagnostics. Scientific Reports, 2019, 9, 7873.	1.6	20

#	Article	IF	CITATIONS
37	Green Nanomaterials for Clean Environment. , 2019, , 63-79.		5
38	Modeling of neotame and fructose thermochemistry: Comparison with mono and divalent metal ions by Computational and experimental approach. Scientific Reports, 2019, 9, 18414.	1.6	4
39	Theoretical insights into the competitive metal bioaffinity of lactoferrin as a metal ion carrier: a DFT study. New Journal of Chemistry, 2019, 43, 16374-16384.	1.4	10
40	MWCNTs-Fe2O3nanoparticle nanohybrid-based highly sensitive electrochemicalsensor for the detection of kaempferol in broccoli samples. Turkish Journal of Chemistry, 2019, 43, 1229-1243.	0.5	7
41	Biogenic synthesis of nanoparticles: A review. Arabian Journal of Chemistry, 2019, 12, 3576-3600.	2.3	563
42	Removal of copper (II) from wastewater using green vegetable waste derived activated carbon: An approach to equilibrium and kinetic study. Arabian Journal of Chemistry, 2019, 12, 4331-4339.	2.3	74
43	Recent Trends in Graphene Oxide-Enabled Nanocomposites for Sensing Applications. , 2019, , 1-39.		0
44	Exploitation of de-oiled jatropha waste for gold nanoparticles synthesis: A green approach. Arabian Journal of Chemistry, 2018 , 11 , 247 - 255 .	2.3	58
45	Selectivity and sensitivity enhanced green energy waste based indirect-î¼-solid phase extraction of carbaryl supported by DFT and molecular docking studies. Journal of Molecular Liquids, 2018, 257, 112-120.	2.3	11
46	Membrane technology for water purification. Environmental Chemistry Letters, 2018, 16, 343-365.	8.3	71
47	One-pot biosynthesis of silver nanoparticles using Iboza Riparia and Ilex Mitis for cytotoxicity on human embryonic kidney cells. Journal of Photochemistry and Photobiology B: Biology, 2018, 178, 560-567.	1.7	21
48	Structural basis of pesticide detection by enzymatic biosensing: a molecular docking and MD simulation study. Journal of Biomolecular Structure and Dynamics, 2018, 36, 1402-1416.	2.0	18
49	Smartphone based bioanalytical and diagnosis applications: A review. Biosensors and Bioelectronics, 2018, 102, 136-149.	5.3	227
50	Green synthesis, characterization and electrochemical sensing of silymarin by ZnO nanoparticles: Experimental and DFT studies. Journal of Electroanalytical Chemistry, 2018, 808, 160-172.	1.9	57
51	Green Nanomaterials for Clean Environment. , 2018, , 1-18.		9
52	Light induced DNA-functionalized TiO2 nanocrystalline interface: Theoretical and experimental insights towards DNA damage detection. Journal of Photochemistry and Photobiology B: Biology, 2018, 188, 159-176.	1.7	18
53	Special Properties of Nanomaterials for Chromatography. , 2018, , 37-54.		1
54	Coreâ€Shell Quantum Dots: Sensing Applications. , 2018, , 313-329.		0

#	Article	IF	CITATIONS
55	Role of Computational Tools in Designing Enzymatic Biosensors for the Detection of Pesticides in Environment., 2018,, 287-311.		O
56	Google Analytics and quick response for advancement of gold nanoparticle-based dual lateral flow immunoassay for malaria – Plasmodium lactate dehydrogenase (pLDH). Analytical Methods, 2017, 9, 5943-5951.	1.3	16
57	Computational and experimental evaluation of selective substitution of thiolated coumarin derivatives on gold nanoparticles: Surface enhancing Raman scattering and electrochemical studies. Applied Surface Science, 2017, 396, 695-704.	3.1	7
58	Quantification of Se(IV) and Co(II) in Macrobrachium lamarrei, fresh water prawns and their feeding materials. Arabian Journal of Chemistry, 2017, 10, S306-S313.	2.3	4
59	Robust adsorption of Direct Navy Blue-106 from textile industrial effluents by bio-hydrogen fermented waste derived activated carbon: Equilibrium and kinetic studies. Arabian Journal of Chemistry, 2017, 10, S3084-S3096.	2.3	13
60	Multivariate optimization of differential pulse polarographic–catalytic hydrogen wave technique for the determination of nickel(II) in real samples. Arabian Journal of Chemistry, 2017, 10, S2260-S2272.	2.3	8
61	Studies on Electrochemical Behaviour of Copper(II)-Dithiocarbamate Complexes at DME: Applications to Environmental and Biological Samples. Asian Journal of Chemistry, 2017, 29, 609-613.	0.1	0
62	Molecular Simulation of Chiral Selector-Enantiomer Interactions through Docking: Antimalarial Drugs as Case Study., 2017,, 363-384.		0
63	Dithiocarbamate Induced Catalytic Hydrogen Wave for the determination of Iron (II) in Waters and Leafy Vegetables: Experimental and Computational Approach. International Journal of Electrochemical Science, 2016, , 8027-8045.	0.5	0
64	Hybrid of ZnONPs/MWCNTs for electrochemical detection of aspartame in food and beverage samples. Journal of Electroanalytical Chemistry, 2016, 774, 51-57.	1.9	21
65	Electrochemical sensing platform amplified with a nanobiocomposite of L-phenylalanine ammonia-lyase enzyme for the detection of capsaicin. Biosensors and Bioelectronics, 2016, 83, 45-53.	5.3	39
66	Spectrophotometric determination of nickel (II) in waters and soils: Novel chelating agents and their biological applications supported by DFT method. Karbala International Journal of Modern Science, 2016, 2, 239-250.	0.5	18
67	Biosynthesis of ZnO nanoparticles using Jacaranda mimosifolia flowers extract: Synergistic antibacterial activity and molecular simulated facet specific adsorption studies. Journal of Photochemistry and Photobiology B: Biology, 2016, 162, 199-207.	1.7	134
68	In-vitro evaluation of copper nanoparticles cytotoxicity on prostate cancer cell lines and their antioxidant, sensing and catalytic activity: One-pot green approach. Journal of Photochemistry and Photobiology B: Biology, 2016, 161, 375-382.	1.7	66
69	An ultrasensitive performance enhanced novel cytochrome c biosensor for the detection of rebaudioside A. Biosensors and Bioelectronics, 2016, 77, 116-123.	5. 3	25
70	Insight into the biosensing of graphene oxide: Present and future prospects. Arabian Journal of Chemistry, 2016, 9, 238-261.	2.3	98
71	Monitoring of Cetylpyridinium Chloride Levels in Surface Waters: Patent Blue-V as Selective Ligand for Spectrophotometric Determination. Asian Journal of Chemistry, 2016, 28, 1039-1042.	0.1	4
72	Seasonal Variation and Distribution of Anionic Surfactants in and around Tirupati: A Famous Pilgrim Centre in South India. Asian Journal of Chemistry, 2015, 27, 3655-3657.	0.1	3

#	Article	IF	CITATIONS
73	Novel Dithiocarbamates for Electrochemical Detection of Nickel(II) in Environmental Samples. Asian Journal of Chemistry, 2015, 27, 3598-3604.	0.1	2
74	Fabrication of copper nanoparticles decorated multiwalled carbon nanotubes as a high performance electrochemical sensor for the detection of neotame. Biosensors and Bioelectronics, 2015, 67, 200-207.	5.3	30
75	Analytical evaluation of steviol glycosides by capillary electrophoresis supported with molecular docking studies. Journal of the Iranian Chemical Society, 2015, 12, 127-136.	1.2	12
76	Polarographic Interaction of Nickel (II) with Ammonium Piperidine-1-Carbodithioate: Application to Environmental Samples. Journal of Environmental Analytical Chemistry, 2014, 01, .	0.3	1
77	Nanotechnology for Water Treatment. Journal of Environmental Analytical Chemistry, 2014, 01, .	0.3	18
78	Analytical and Biological Evaluation of Two Schiff?s Bases: Spectrophotometeric Analysis of Copper (II) in Water and Soil Samples. Journal of Environmental Analytical Chemistry, 2014, 01, .	0.3	1
79	Dye Sensitized Solar Cells: Tool to Overcome the Future Energy Crisis. Journal of Environmental Analytical Chemistry, 2014, 02, .	0.3	1
80	Electrochemical Determination of Capsaicin and Silymarin Using a Glassy Carbon Electrode Modified by Gold Nanoparticle Decorated Multiwalled Carbon Nanotubes. Analytical Letters, 2014, 47, 2813-2828.	1.0	38
81	Determination of Neotame by High-Performance Capillary Electrophoresis Using ß-cyclodextrin as a Chiral Selector. Analytical Letters, 2014, 47, 2795-2812.	1.0	8
82	Dithiocarbamates as hazardous remediation agent: A critical review on progress in environmental chemistry for inorganic species studies of 20th century. Arabian Journal of Chemistry, 2014, 7, 11-25.	2.3	136
83	Development of Green Energy Waste Activated Carbon for Removal of Trivalent Chromium: Equilibrium and Kinetic Modeling. Separation Science and Technology, 2014, 49, 513-522.	1.3	13
84	Voltammetric Method for Manganese Analysis in Indian Traditional Leafy Vegetables and Medicinal Plants Collected Around Tirupati Town, a Famous Pilgrim Center in India: The Catalytic Hydrogen Wave (CHW) Technique. Food Analytical Methods, 2012, 5, 69-81.	1.3	9
85	The determination of cobalt(II) at DME using catalytic hydrogen current technique in various water samples, agricultural materials and pharmaceuticals. Environmental Monitoring and Assessment, 2011, 183, 531-543.	1.3	6
86	Dithiocarbamates as a Sensitive Electroanalytical Reagent: Determination of Chromium by Catalytic Hydrogen Wave at DME in Water Systems and Vegetables. Food Analytical Methods, 2011, 4, 453-464.	1.3	11
87	Facile and Sensitive Determination of Selenium (IV) in Pharmaceutical Formulations by Flow Injection Spectrophotometry. Journal of Pharmaceutical Sciences, 2008, 97, 1927-1933.	1.6	2
88	Speciation determination of chromium(III) and (VI) using preconcentration cloud point extraction with flame atomic absorption spectrometry (FAAS). Journal of Hazardous Materials, 2008, 150, 582-586.	6.5	106
89	Statistical Physics Model of EBT Adsorption on Pb(II) doped Zinc Oxide Nanoparticles: Kinetics, Isotherm and Reuse Study. International Journal of Environmental Analytical Chemistry, 0, , 1-15.	1.8	7
90	CHAPTER 1. Perspective on Analytical Sciences and Nanotechnology. RSC Detection Science, 0, , 1-34.	0.0	6

#	Article	IF	CITATIONS
91	Handbook of Biopolymers. , 0, , .		8
92	N'-(4-(diethylamino)-2-hydroxybenzylidene) isonicotinohydrazide based chemosensor for nanomolar detection of Ni(II) ion. International Journal of Environmental Analytical Chemistry, 0, , 1-17.	1.8	3