Shin-ichi Tsunoda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8760063/publications.pdf

Version: 2024-02-01

93792 116156 4,743 111 39 66 citations g-index h-index papers 123 123 123 7124 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Characterization of a TNFR2-Selective Agonistic TNF-α Mutant and Its Derivatives as an Optimal Regulatory T Cell Expander. Journal of Immunology, 2021, 206, 1740-1751.	0.4	12
2	Structural optimization of a TNFR1-selective antagonistic TNF $\hat{l}\pm$ mutant to create new-modality TNF-regulating biologics. Journal of Biological Chemistry, 2020, 295, 9379-9391.	1.6	7
3	A gapmer antisense oligonucleotide targeting SRRM4 is a novel therapeutic medicine for lung cancer. Scientific Reports, 2019, 9, 7618.	1.6	24
4	Neutrophil Depletion Exacerbates Pregnancy Complications, Including Placental Damage, Induced by Silica Nanoparticles in Mice. Frontiers in Immunology, 2018, 9, 1850.	2.2	17
5	A trimeric structural fusion of an antagonistic tumor necrosis factor-α mutant enhances molecular stability and enables facile modification. Journal of Biological Chemistry, 2017, 292, 6438-6451.	1.6	14
6	Identifying a size-specific hazard of silica nanoparticles after intravenous administration and its relationship to the other hazards that have negative correlations with the particle size in mice. Nanotechnology, 2017, 28, 135101.	1.3	15
7	Modifying the Surface of Silica Nanoparticles with Amino or Carboxyl Groups Decreases Their Cytotoxicity to Parenchymal Hepatocytes. Biological and Pharmaceutical Bulletin, 2017, 40, 726-728.	0.6	7
8	Creation of mouse TNFR2-selective agonistic TNF mutants using a phage display technique. Biochemistry and Biophysics Reports, 2016, 7, 309-315.	0.7	7
9	A Novel Bispecific Antibody against Human CD3 and Ephrin Receptor A10 for Breast Cancer Therapy. PLoS ONE, 2015, 10, e0144712.	1.1	39
10	Protein corona changes mediated by surface modification of amorphous silica nanoparticles suppress acute toxicity and activation of intrinsic coagulation cascade in mice. Nanotechnology, 2015, 26, 245101.	1.3	47
11	Identification and evaluation of metastasis-related proteins, oxysterol binding protein-like 5 and calumenin, in lung tumors. International Journal of Oncology, 2015, 47, 195-205.	1.4	50
12	Generation and characterization of a bispecific diabody targeting both EPH receptor A10 and CD3. Biochemical and Biophysical Research Communications, 2015, 456, 908-912.	1.0	16
13	Aminopeptidase P3 (APP3), a novel member of the TNF/TNFR2 signaling complex, induces phosphorylation of JNK. Journal of Cell Science, 2015, 128, 656-69.	1.2	18
14	Cutaneous exposure to agglomerates of silica nanoparticles and allergen results in IgE-biased immune response and increased sensitivity to anaphylaxis in mice. Particle and Fibre Toxicology, 2015, 12, 16.	2.8	22
15	Size and surface modification of amorphous silica particles determine their effects on the activity of human CYP3A4 in vitro. Nanoscale Research Letters, 2014, 9, 651.	3.1	14
16	The Absorption, Distribution, Metabolism, and Excretion Profile of Nanoparticles. Nanomedicine and Nanotoxicology, 2014, , 259-271.	0.1	4
17	Intestinal absorption and biological effects of orally administered amorphous silica particles. Nanoscale Research Letters, 2014, 9, 532.	3.1	49
18	Evaluation of silica nanoparticle binding to major human blood proteins. Nanoscale Research Letters, 2014, 9, 2493.	3.1	24

#	Article	IF	CITATIONS
19	Asian Dust Particles Induce Macrophage Inflammatory Responses via Mitogen-Activated Protein Kinase Activation and Reactive Oxygen Species Production. Journal of Immunology Research, 2014, 2014, 1-9.	0.9	15
20	Ephrin receptor A10 is a promising drug target potentially useful for breast cancers including triple negative breast cancers. Journal of Controlled Release, 2014, 189, 72-79.	4.8	44
21	Eph receptor A10 has a potential as a target for a prostate cancer therapy. Biochemical and Biophysical Research Communications, 2014, 450, 545-549.	1.0	27
22	Intranasal exposure to amorphous nanosilica particles could activate intrinsic coagulation cascade and platelets in mice. Particle and Fibre Toxicology, 2013, 10, 41.	2.8	61
23	Mutants of lymphotoxin- $\hat{l}\pm$ with augmented cytotoxic activity via TNFR1 for use in cancer therapy. Cytokine, 2013, 61, 578-584.	1.4	4
24	Proteomic analysis of the hippocampus in Alzheimer's disease model mice by using two-dimensional fluorescence difference in gel electrophoresis. Neuroscience Letters, 2013, 534, 85-89.	1.0	38
25	Liver-specific microRNAs as biomarkers of nanomaterial-induced liver damage. Nanotechnology, 2013, 24, 405102.	1.3	49
26	Expression of Eph receptor A10 is correlated with lymph node metastasis and stage progression in breast cancer patients. Cancer Medicine, 2013, 2, 972-977.	1.3	34
27	Robo4 is an effective tumor endothelial marker for antibody-drug conjugates based on the rapid isolation of the anti-Robo4 cell-internalizing antibody. Blood, 2013, 121, 2804-2813.	0.6	30
28	Carbon Nanomaterials: Efficacy and Safety for Nanomedicine. Materials, 2012, 5, 350-363.	1.3	65
29	Amorphous nanosilicas induce consumptive coagulopathy after systemic exposure. Nanotechnology, 2012, 23, 045101.	1.3	62
30	Suppression of nanosilica particle-induced inflammation by surface modification of the particles. Archives of Toxicology, 2012, 86, 1297-1307.	1.9	49
31	Distribution and histologic effects of intravenously administered amorphous nanosilica particles in the testes of mice. Biochemical and Biophysical Research Communications, 2012, 420, 297-301.	1.0	68
32	Annexin A4 is a possible biomarker for cisplatin susceptibility of malignant mesothelioma cells. Biochemical and Biophysical Research Communications, 2012, 421, 140-144.	1.0	25
33	Hemopexin as biomarkers for analyzing the biological responses associated with exposure to silica nanoparticles. Nanoscale Research Letters, 2012, 7, 555.	3.1	15
34	Amorphous silica nanoparticles enhance cross-presentation in murine dendritic cells. Biochemical and Biophysical Research Communications, 2012, 427, 553-556.	1.0	40
35	Surface modification of amorphous nanosilica particles suppresses nanosilica-induced cytotoxicity, ROS generation, and DNA damage in various mammalian cells. Biochemical and Biophysical Research Communications, 2012, 427, 748-752.	1.0	51
36	Amorphous silica nanoparticles size-dependently aggravate atopic dermatitis-like skin lesions following an intradermal injection. Particle and Fibre Toxicology, 2012, 9, 3.	2.8	75

#	Article	IF	Citations
37	Lysine-deficient lymphotoxin-α mutant for site-specific PEGylation. Cytokine, 2011, 56, 489-493.	1.4	3
38	Limited expression of reticulocalbin-1 in lymphatic endothelial cells in lung tumor but not in normal lung. Biochemical and Biophysical Research Communications, 2011, 405, 610-614.	1.0	8
39	Structure–activity relationship of T-cell receptors based on alanine scanning. Biochemical and Biophysical Research Communications, 2011, 415, 558-562.	1.0	2
40	Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nature Nanotechnology, 2011, 6, 321-328.	15.6	622
41	Therapeutic effect of PEGylated TNFR1-selective antagonistic mutant TNF in experimental autoimmune encephalomyelitis mice. Journal of Controlled Release, 2011, 149, 8-14.	4.8	49
42	Effect of amorphous silica nanoparticles on in vitro RANKL-induced osteoclast differentiation in murine macrophages. Nanoscale Research Letters, 2011, 6, 464.	3.1	19
43	Modifying the antigen-immunization schedule improves the variety of monoclonal antibodies obtained from immune-phage antibody libraries against HIV-1 Nef and Vif. Journal of Bioscience and Bioengineering, 2011, 111, 597-599.	1.1	4
44	Acute phase proteins as biomarkers for predicting the exposure and toxicity of nanomaterials. Biomaterials, 2011, 32, 3-9.	5.7	54
45	Development of an antibody proteomics system using a phage antibody library for efficient screening of biomarker proteins. Biomaterials, 2011, 32, 162-169.	5.7	31
46	Promotion of allergic immune responses by intranasally-administrated nanosilica particles in mice. Nanoscale Research Letters, 2011, 6, 195.	3.1	50
47	Effect of surface properties of silica nanoparticles on their cytotoxicity and cellular distribution in murine macrophages. Nanoscale Research Letters, 2011, 6, 93.	3.1	71
48	Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes. Particle and Fibre Toxicology, 2011, 8, 1.	2.8	229
49	Development of a novel DDS for site-specific PEGylated proteins. Chemistry Central Journal, 2011, 5, 25.	2.6	9
50	Systemic distribution, nuclear entry and cytotoxicity of amorphous nanosilica following topical application. Biomaterials, 2011, 32, 2713-2724.	5.7	161
51	Fine tuning of receptor-selectivity for tumor necrosis factor- $\hat{l}\pm$ using a phage display system with one-step competitive panning. Biomaterials, 2011, 32, 5498-5504.	5 . 7	15
52	Identification of New Candidates as Mucosal Vaccine Adjuvant in TNF Family Cytokines. Advances in Experimental Medicine and Biology, 2011, 691, 299-304.	0.8	1
53	Anti-inflammatory Effects of a Novel TNFR1-Selective Antagonistic TNF Mutant on Established Murine Collagen-Induced Arthritis. Advances in Experimental Medicine and Biology, 2011, 691, 493-500.	0.8	5
54	Development of functional cytokine mutants bymolecular evolution and drug delivery technology. Drug Delivery System, 2011, 26, 604-610.	0.0	0

#	Article	IF	Citations
55	Interleukin-1 Family Cytokines as Mucosal Vaccine Adjuvants for Induction of Protective Immunity against Influenza Virus. Journal of Virology, 2010, 84, 12703-12712.	1.5	109
56	Creation of a LIGHT mutant with the capacity to evade the decoy receptor for cancer therapy. Biomaterials, 2010, 31, 3357-3363.	5.7	13
57	Carbon Nanotubes Elicit DNA Damage and Inflammatory Response Relative to Their Size and Shape. Inflammation, 2010, 33, 276-280.	1.7	143
58	Creation of lysine-deficient mutant lymphotoxin- \hat{l}_{\pm} with receptor selectivity by using a phage display system. Biomaterials, 2010, 31, 1935-1943.	5 . 7	12
59	The effect of surface modification of amorphous silica particles on NLRP3 inflammasome mediated IL- $1\hat{l}^2$ production, ROS production and endosomal rupture. Biomaterials, 2010, 31, 6833-6842.	5.7	136
60	Comparison of the anti-tumor activity of native, secreted, and membrane-bound LIGHT in mouse tumor models. International Immunopharmacology, 2010, 10, 26-33.	1.7	2
61	Generation of mouse macrophages expressing membrane-bound TNF variants with selectivity for TNFR1 or TNFR2. Cytokine, 2010, 50, 75-83.	1.4	5
62	Titanium dioxide induces different levels of IL- $1\hat{l}^2$ production dependent on its particle characteristics through caspase-1 activation mediated by reactive oxygen species and cathepsin B. Biochemical and Biophysical Research Communications, 2010, 392, 160-165.	1.0	83
63	Creation of a lysine-deficient LIGHT mutant with the capacity for site-specific PEGylation and low affinity for a decoy receptor. Biochemical and Biophysical Research Communications, 2010, 393, 888-893.	1.0	10
64	Solution of the Structure of the TNF-TNFR2 Complex. Science Signaling, 2010, 3, ra83.	1.6	171
65	Development of functional cytokines as novel mucosal vaccine adjuvants. Drug Delivery System, 2010, 25, 22-28.	0.0	1
66	A Novel Tumor-Targeted Therapy Using a Claudin-4-Targeting Molecule. Molecular Pharmacology, 2009, 76, 918-926.	1.0	71
67	The use of a mutant TNF- \hat{l}_{\pm} as a vaccine adjuvant for the induction of mucosal immune responses. Biomaterials, 2009, 30, 5869-5876.	5.7	33
68	Crystallization and preliminary X-ray analysis of the tumour necrosis factor α–tumour necrosis factor receptor type 2 complex. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 295-298.	0.7	10
69	The augmentation of intracellular delivery of peptide therapeutics by artificial protein transduction domains. Biomaterials, 2009, 30, 3318-3323.	5.7	9
70	The treatment of established murine collagen-induced arthritis with a TNFR1-selective antagonistic mutant TNF. Biomaterials, 2009, 30, 6638-6647.	5.7	50
71	LIGHT protein suppresses tumor growth by augmentation of immune response. Immunology Letters, 2009, 127, 33-38.	1.1	9
72	Silica nanoparticles as hepatotoxicants. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 496-501.	2.0	209

#	Article	IF	CITATIONS
73	Histological analysis of 70-nm silica particles-induced chronic toxicity in mice. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 626-629.	2.0	80
74	TNF superfamily member, TL1A, is a potential mucosal vaccine adjuvant. Biochemical and Biophysical Research Communications, 2009, 384, 296-300.	1.0	16
7 5	Novel protein engineering strategy for creating highly receptor-selective mutant TNFs. Biochemical and Biophysical Research Communications, 2009, 388, 667-671.	1.0	7
76	Structureâ€"Function Relationship of Tumor Necrosis Factor (TNF) and Its Receptor Interaction Based on 3D Structural Analysis of a Fully Active TNFR1-Selective TNF Mutant. Journal of Molecular Biology, 2009, 385, 1221-1229.	2.0	65
77	Fast Binding Kinetics and Conserved 3D Structure Underlie the Antagonistic Activity of Mutant TNF: Useful Information for Designing Artificial Proteo-Antagonists. Journal of Biochemistry, 2009, 146, 167-172.	0.9	15
78	Arsenic Trioxide Inhibits Human T Cell-Lymphotropic Virus-1-Induced Syncytiums by Down-Regulating gp46. Biological and Pharmaceutical Bulletin, 2009, 32, 1286-1288.	0.6	2
79	Domain mapping of a claudin-4 modulator, the C-terminal region of C-terminal fragment of Clostridium perfringens enterotoxin, by site-directed mutagenesis. Biochemical Pharmacology, 2008, 75, 1639-1648.	2.0	73
80	Simple and highly sensitive assay system for TNFR2-mediated soluble- and transmembrane-TNF activity. Journal of Immunological Methods, 2008, 335, 71-78.	0.6	11
81	Organelle-Targeted Delivery of Biological Macromolecules Using the Protein Transduction Domain: Potential Applications for Peptide Aptamer Delivery into the Nucleus. Journal of Molecular Biology, 2008, 380, 777-782.	2.0	24
82	Ligand-independent assembly of purified soluble magic roundabout (Robo4), a tumor-specific endothelial marker. Protein Expression and Purification, 2008, 61, 78-82.	0.6	4
83	The therapeutic effect of TNFR1-selective antagonistic mutant TNF-α in murine hepatitis models. Cytokine, 2008, 44, 229-233.	1.4	47
84	Creation and X-ray Structure Analysis of the Tumor Necrosis Factor Receptor-1-selective Mutant of a Tumor Necrosis Factor-α Antagonist. Journal of Biological Chemistry, 2008, 283, 998-1007.	1.6	89
85	3P-081 Creation of TNFR1-selective mutant lymphotoxin alpha using phage display system(The 46th) Tj ETQq1 1	0.784314 0.0	rgBT /Overl
86	Creation of Novel Cell-Penetrating Peptides for Intracellular Drug Delivery Using Systematic Phage Display Technology Originated from Tat Transduction Domain. Biological and Pharmaceutical Bulletin, 2007, 30, 218-223.	0.6	32
87	Improved cytosolic translocation and tumor-killing activity of Tat-shepherdin conjugates mediated by co-treatment with Tat-fused endosome-disruptive HA2 peptide. Biochemical and Biophysical Research Communications, 2007, 363, 1027-1032.	1.0	45
88	Role of amino acid residue 90 in bioactivity and receptor binding capacity of tumor necrosis factor mutants. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 1029-1035.	1.1	7
89	Role of tyrosine residues in modulation of claudin-4 by the C-terminal fragment of Clostridium perfringens enterotoxin. Biochemical Pharmacology, 2007, 73, 206-214.	2.0	45
90	Role of Tyr306 in the C-terminal fragment of Clostridium perfringens enterotoxin for modulation of tight junction. Biochemical Pharmacology, 2007, 73, 824-830.	2.0	33

#	Article	IF	Citations
91	Quality Enhancement of the Non-immune Phage scFv Library to Isolate Effective Antibodies. Biological and Pharmaceutical Bulletin, 2006, 29, 1325-1330.	0.6	25
92	Creation of Novel Protein Transduction Domain (PTD) Mutants by a Phage Display-Based High-Throughput Screening System. Biological and Pharmaceutical Bulletin, 2006, 29, 1570-1574.	0.6	25
93	Promotion of Optimized Protein Therapy by Bioconjugation as a Polymeric DDS. Anti-Cancer Agents in Medicinal Chemistry, 2006, 6, 251-258.	0.9	8
94	Design of a pH-Sensitive Polymeric Carrier for Drug Release and Its Application in Cancer Therapy. Clinical Cancer Research, 2004, 10, 2545-2550.	3.2	64
95	Effective accumulation of poly(vinylpyrrolidone-co-vinyl laurate) into the spleen. Journal of Biomedical Materials Research Part B, 2004, 70A, 219-223.	3.0	12
96	The use of PVP as a polymeric carrier to improve the plasma half-life of drugs. Biomaterials, 2004, 25, 3259-3266.	5.7	175
97	The targeting of anionized polyvinylpyrrolidone to the renal system. Biomaterials, 2004, 25, 4309-4315.	5.7	58
98	Selective Enhancer of Tumor Vascular Permeability for Optimization of Cancer Chemotherapy. Biological and Pharmaceutical Bulletin, 2004, 27, 437-439.	0.6	5
99	Cell array coupled with laser scanning cytometry allows easy analysis of changes in cyclin expression during the cell cycle. An application of cell array system. Cytotechnology, 2002, 24, 41-47.	0.7	1
100	Effective Cancer Targeting Using an Anti-tumor Tissue Vascular Endotheliumspecific Monoclonal Antibody (TES-23). Japanese Journal of Cancer Research, 2000, 91, 1319-1325.	1.7	24
101	In Vitro Remodeling of Tumor Vascular Endothelial Cells Using Conditioned Medium from Various Tumor Cells and Their Sensitivity to TNF-α. Biochemical and Biophysical Research Communications, 2000, 268, 809-813.	1.0	16
102	Suppression of solid tumor growth by a monoclonal antibody against tumor vasculature in rats: Involvement of intravascular thrombosis and fibrinogenesis., 1999, 82, 853-859.		8
103	Molecular Design of Conjugated Tumor Necrosis Factor-α: Synthesis and Characteristics of Polyvinyl Pyrrolidone Modified Tumor Necrosis Factor-α. Biochemical and Biophysical Research Communications, 1999, 257, 448-453.	1.0	34
104	Tumor Vascular Targeting Using a Tumor-Tissue Endothelium-Specific Monoclonal Antibody as an Effective Strategy for Cancer Chemotherapy. Biochemical and Biophysical Research Communications, 1999, 260, 346-350.	1.0	11
105	Bioconjugation of Laminin Peptide YIGSR with Poly(Styrene Co-maleic Acid) Increases Its Antimetastatic Effect on Lung Metastasis of B16-BL6 Melanoma Cells. Biochemical and Biophysical Research Communications, 1999, 255, 75-79.	1.0	45
106	Identification of tumor vascular antigens by monoclonal antibodies prepared from rat-tumor-derived endothelial cells., 1998, 77, 561-566.		12
107	Antibody-Based Therapy Targeting Tumor Vascular Endothelial Cells Suppresses Solid Tumor Growth in Rats. Biochemical and Biophysical Research Communications, 1997, 236, 493-496.	1.0	14
108	Bioconjugation of Tumor Necrosis Factor-α with the Copolymer of Divinyl Ether and Maleic Anhydride Increasing Its Antitumor Potency. Biochemical and Biophysical Research Communications, 1997, 239, 160-165.	1.0	12

Shin-ichi Tsunoda

#	Article	IF	CITATIONS
109	Polyethylene glycol modification of interleukin-6 enhances its thrombopoietic activity. Journal of Controlled Release, 1995, 33, 447-451.	4.8	19
110	Characterization of PEG-IL-6 and its thrombopoietic activity in vivo Drug Delivery System, 1995, 10, 175-180.	0.0	2
111	Intravenous Administration of Polyethylene Glycol-modified Tumor Necrosis Factor-αCompletely Regressed Solid Tumor in Meth-A Murine Sarcoma Model. Japanese Journal of Cancer Research, 1994, 85, 1185-1188.	1.7	12