
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8759810/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interaction between miR4749 and Human Serum Albumin as Revealed by Fluorescence, FRET, Atomic Force Spectroscopy and Computational Modelling. International Journal of Molecular Sciences, 2022, 23, 1291.	4.1	4
2	A Competitive O-Acetylserine Sulfhydrylase Inhibitor Modulates the Formation of Cysteine Synthase Complex. Catalysts, 2021, 11, 700.	3.5	4
3	Solution structure of the anticancer p28 peptide in biomimetic medium. Journal of Peptide Science, 2021, 27, e3357.	1.4	3
4	Temperature Modulation of the DBDp53 Structure as Monitored by Static and Time-Resolved Fluorescence Combined with Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2021, 125, 10166-10173.	2.6	2
5	The use of a commercial ESI Z-spray source for ambient ion soft landing and microdroplet reactivity experiments. International Journal of Mass Spectrometry, 2021, 468, 116658.	1.5	9
6	Direct Interaction of miRNA and circRNA with the Oncosuppressor p53: An Intriguing Perspective in Cancer Research. Cancers, 2021, 13, 6108.	3.7	7
7	A Reliable BioFET Immunosensor for Detection of p53 Tumour Suppressor in Physiological-Like Environment. Sensors, 2020, 20, 6364.	3.8	18
8	Time-Resolved Fluorescence and Essential Dynamics Study on the Structural Heterogeneity of p53DBD Bound to the Anticancer p28 Peptide. Journal of Physical Chemistry B, 2020, 124, 9820-9828.	2.6	3
9	Toward Cancer Diagnostics of the Tumor Suppressor p53 by Surface Enhanced Raman Spectroscopy. Sensors, 2020, 20, 7153.	3.8	3
10	Nanogap Sensors Decorated with SnO ₂ Nanoparticles Enable Low-Temperature Detection of Volatile Organic Compounds. ACS Applied Nano Materials, 2020, 3, 3337-3346.	5.0	13
11	Investigation of a Direct Interaction between miR4749 and the Tumor Suppressor p53 by Fluorescence, FRET and Molecular Modeling. Biomolecules, 2020, 10, 346.	4.0	8
12	Portable Immunosensor Based on Extended Gate—Field Effect Transistor for Rapid, Sensitive Detection of Cancer Markers. Proceedings (mdpi), 2019, 15, .	0.2	1
13	Raman Evidence of p53-DBD Disorder Decrease upon Interaction with the Anticancer Protein Azurin. International Journal of Molecular Sciences, 2019, 20, 3078.	4.1	13
14	Probing direct interaction of oncomiR-21-3p with the tumor suppressor p53 by fluorescence, FRET and atomic force spectroscopy. Archives of Biochemistry and Biophysics, 2019, 671, 35-41.	3.0	16
15	Interaction Force Fluctuations in Antigen–Antibody Biorecognition Studied by Atomic Force Spectroscopy. ACS Omega, 2019, 4, 3627-3634.	3.5	3
16	Interaction of human hemoglobin and semi-hemoglobins with the Staphylococcus aureus hemophore IsdB: a kinetic and mechanistic insight. Scientific Reports, 2019, 9, 18629.	3.3	21
17	Interaction of the anticancer p28 peptide with p53-DBD as studied by fluorescence, FRET, docking and MD simulations. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 342-350.	2.4	20
18	Surface enhanced Raman spectroscopy based immunosensor for ultrasensitive and selective detection of wild type p53 and mutant p53R175H. Analytica Chimica Acta, 2018, 1029, 86-96.	5.4	29

#	Article	IF	CITATIONS
19	Imaging and kinetics of the bimolecular complex formed by the tumor suppressor p53 with ubiquitin ligase COP1 as studied by atomic force microscopy and surface plasmon resonance. International Journal of Nanomedicine, 2018, Volume 13, 251-259.	6.7	16
20	Structural Characterization of the Intrinsically Disordered Protein p53 Using Raman Spectroscopy. Applied Spectroscopy, 2017, 71, 823-832.	2.2	26
21	Binding of Amphipathic Cell Penetrating Peptide p28 to Wild Type and Mutated p53 as studied by Raman, Atomic Force and Surface Plasmon Resonance spectroscopies. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 910-921.	2.4	20
22	Binding kinetics of mutant p53R175H with wild type p53 and p63: A Surface Plasmon Resonance and Atomic Force Spectroscopy study. Biophysical Chemistry, 2017, 228, 55-61.	2.8	5
23	Structure, Dynamics, and Electron Transfer of Azurin Bound to a Gold Electrode. Langmuir, 2017, 33, 9190-9200.	3.5	5
24	Vibrational Changes Induced by Electron Transfer in Surface Bound Azurin Metalloprotein Studied by Tip-Enhanced Raman Spectroscopy and Scanning Tunneling Microscopy. ACS Nano, 2017, 11, 12824-12831.	14.6	25
25	Surface Plasmon Resonance Sensing of Biorecognition Interactions within the Tumor Suppressor p53 Network. Sensors, 2017, 17, 2680.	3.8	22
26	MDM2–MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance. International Journal of Nanomedicine, 2016, Volume 11, 4221-4229.	6.7	11
27	Electron transfer, conduction and biorecognition properties of the redox metalloprotein Azurin assembled onto inorganic substrates. European Polymer Journal, 2016, 83, 407-427.	5.4	32
28	Kinetics and binding geometries of the complex between β2-microglobulin and its antibody: An AFM and SPR study. Biophysical Chemistry, 2016, 211, 19-27.	2.8	18
29	Energy landscape investigation by wavelet transform analysis of atomic force spectroscopy data in a biorecognition experiment. Journal of Biological Physics, 2016, 42, 167-176.	1.5	1
30	Chirality Switching within an Anionic Cell-Penetrating Peptide Inhibits Translocation without Affecting Preferential Entry. Molecular Pharmaceutics, 2015, 12, 140-149.	4.6	31
31	Calcium Ions Modulate the Mechanics of Tomato Bushy Stunt Virus. Biophysical Journal, 2015, 109, 390-397.	0.5	25
32	Electron tunnelling through single azurin molecules can be on/off switched by voltage pulses. Applied Physics Letters, 2015, 106, 183701.	3.3	15
33	A nanotechnological, molecular-modeling, and immunological approach to study the interaction of the anti-tumorigenic peptide p28 with the p53 family of proteins. International Journal of Nanomedicine, 2014, 9, 1799.	6.7	11
34	Binding of azurin to cytochrome <i>c</i> 551 as investigated by surface plasmon resonance and fluorescence. Journal of Molecular Recognition, 2014, 27, 124-130.	2.1	14
35	Antigen–antibody biorecognition events as discriminated by noise analysis of force spectroscopy curves. Nanotechnology, 2014, 25, 335102.	2.6	17
36	Interaction of mutant p53 with p73: A Surface Plasmon Resonance and Atomic Force Spectroscopy study. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1958-1964.	2.4	15

#	Article	IF	CITATIONS
37	Excitation of the ligand-to-metal charge transfer band induces electron tunnelling in azurin. Applied Physics Letters, 2014, 104, 093702.	3.3	10
38	Conductive atomic force microscopy study of single molecule electron transport through the Azurin-gold nanoparticle system. Applied Physics Letters, 2013, 102, 203704.	3.3	14
39	1/fαNoise in the Dynamic Force Spectroscopy Curves Signals the Occurrence of Biorecognition. Physical Review Letters, 2013, 110, 048104.	7.8	21
40	Ultrafast Pump–Probe Study of the Excited-State Charge-Transfer Dynamics in Blue Copper Rusticyanin. Journal of Physical Chemistry B, 2012, 116, 4192-4198.	2.6	15
41	Surface-enhanced Raman scattering detection of wild-type and mutant p53 proteins at very low concentration in human serum. Analytical Biochemistry, 2012, 421, 9-15.	2.4	70
42	Free energy evaluation of the p53-Mdm2 complex from unbinding work measured by dynamic force spectroscopy. Physical Chemistry Chemical Physics, 2011, 13, 2738-2743.	2.8	14
43	Steered Molecular Dynamics Simulations of the Electron Transfer Complex between Azurin and Cytochrome <i>c</i> ₅₅₁ . Journal of Physical Chemistry B, 2011, 115, 1211-1219.	2.6	9
44	Interaction of an anticancer peptide fragment of azurin with p53 and its isolated domains studied by atomic force spectroscopy. International Journal of Nanomedicine, 2011, 6, 3011.	6.7	50
45	SERS-based nanobiosensing for ultrasensitive detection of the p53 tumor suppressor. International Journal of Nanomedicine, 2011, 6, 2033.	6.7	34
46	Azurin modulates the association of Mdm2 with p53: SPR evidence from interaction of the fullâ€length proteins. Journal of Molecular Recognition, 2011, 24, 707-714.	2.1	26
47	Modelling the interaction between the p53 DNAâ€binding domain and the p28 peptide fragment of Azurin. Journal of Molecular Recognition, 2011, 24, 1043-1055.	2.1	25
48	Interaction of p53 with Mdm2 and azurin as studied by atomic force spectroscopy. Journal of Molecular Recognition, 2010, 23, 343-351.	2.1	25
49	The application of atomic force spectroscopy to the study of biological complexes undergoing a biorecognition process. Chemical Society Reviews, 2010, 39, 734-749.	38.1	120
50	Modeling the interaction between the Nâ€ŧerminal domain of the tumor suppressor p53 and azurin. Journal of Molecular Recognition, 2009, 22, 215-222.	2.1	23
51	A combined atomic force microscopy imaging and docking study to investigate the complex between p53 DNA binding domain and Azurin. Journal of Molecular Recognition, 2009, 22, 506-515.	2.1	13
52	Surface-enhanced Raman spectroscopy combined with atomic force microscopy for ultrasensitive detection of thrombin. Analytical Biochemistry, 2009, 393, 149-154.	2.4	23
53	Atomic Force Spectroscopy in Biological Complex Formation: Strategies and Perspectives. Journal of Physical Chemistry B, 2009, 113, 16449-16464.	2.6	44
54	Probing the interaction between p53 and the bacterial protein azurin by single molecule force spectroscopy. Journal of Molecular Recognition, 2008, 21, 63-70.	2.1	59

#	Article	IF	CITATIONS
55	Statistical analysis of intensity fluctuations in single molecule SERS spectra. Physical Chemistry Chemical Physics, 2007, 9, 5315.	2.8	23
56	Docking and molecular dynamics simulation of the Azurin–Cytochrome c551 electron transfer complex. Journal of Molecular Recognition, 2007, 20, 122-131.	2.1	24
57	Docking study and free energy simulation of the complex between p53 DNAâ€binding domain and azurin. Journal of Molecular Recognition, 2007, 20, 215-226.	2.1	54
58	SERS detection of thrombin by protein recognition using functionalized gold nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2007, 3, 306-310.	3.3	58
59	Quenching and Blinking of Fluorescence of a Single Dye Molecule Bound to Gold Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 16491-16498.	2.6	85
60	Time-dependent study of single-molecule SERS signal from yeast cytochrome c. Chemical Physics, 2006, 326, 356-362.	1.9	26
61	Topological and dynamical properties of Azurin anchored to a gold substrate as investigated by molecular dynamics simulation. Biophysical Chemistry, 2006, 122, 206-214.	2.8	21
62	Electron tunneling in a metal-protein-metal junction investigated by scanning tunneling and conductive atomic force spectroscopies. Applied Physics Letters, 2006, 89, 183125.	3.3	23
63	Temporal Fluctuations in Single-Molecule SERS Spectra. , 2006, , 279-296.		7
64	Temporal Fluctuations in Single-Molecule SERS Spectra. , 2006, , 279-296.		0
65	Single-molecule detection of yeast cytochrome c by Surface-Enhanced Raman Spectroscopy. Biophysical Chemistry, 2005, 113, 41-51.	2.8	89
66	Lévy Statistics of Vibrational Mode Fluctuations of Single Molecules from Surface-Enhanced Raman Scattering. Physical Review Letters, 2005, 94, 068303.	7.8	51
67	SERS and Tunneling Spectroscopy Investigation of Iron-Protoporphyrin IX Adsorbed on a Silver Tip. Journal of Physical Chemistry B, 2005, 109, 16571-16574.	2.6	15
68	Optical Spectroscopic Investigation of the Alkaline Transition in Umecyanin from Horseradish Rootâ€. Biochemistry, 2005, 44, 16090-16097.	2.5	14
69	Neutron scattering and molecular dynamics simulation: a conjugate approach to investigate the dynamics of electron transfer proteins. Journal of Physics Condensed Matter, 2004, 16, R83-R110.	1.8	13
70	Evidence of electron-transfer in the SERS spectra of a single iron-protoporphyrin IX molecule. Chemical Physics Letters, 2004, 395, 222-226.	2.6	26
71	Topological and Electron-Transfer Properties of Yeast Cytochrome c Adsorbed on Bare Gold Electrodes. ChemPhysChem, 2003, 4, 1183-1188.	2.1	49
72	A Combined Atomic Force Microscopy and Molecular Dynamics Simulation Study on a Plastocyanin Mutant Chemisorbed on a Gold Surface. ChemPhysChem, 2003, 4, 1189-1195.	2.1	22

#	Article	IF	CITATIONS
73	Temporal fluctuations in the SERRS spectra of single iron–protoporphyrin IX molecule. Chemical Physics, 2003, 290, 297-306.	1.9	39
74	MD simulation of a plastocyanin mutant adsorbed onto a gold surface. Biophysical Chemistry, 2003, 106, 111-123.	2.8	36
75	Excited state charge-transfer dynamics study of poplar plastocyanin by ultrafast pump-probe spectroscopy and molecular dynamics simulation. Biophysical Chemistry, 2003, 106, 221-231.	2.8	22
76	Surface-Enhanced Resonance Raman Spectroscopy Signals from Single Myoglobin Molecules. Applied Spectroscopy, 2002, 56, 1531-1537.	2.2	91
77	Molecular Dynamics of Water at the Proteinâ^'Solvent Interface. Journal of Physical Chemistry B, 2002, 106, 6617-6633.	2.6	484
78	Vibrational coherence in Azurin with impulsive excitation of the LMCT absorption band. Chemical Physics Letters, 2002, 362, 497-503.	2.6	31
79	Concerted motions in copper plastocyanin and azurin: an essential dynamics study. Biophysical Chemistry, 2001, 90, 45-56.	2.8	46
80	Molecular dynamics simulation and essential dynamics study of mutated plastocyanin: structural, dynamical and functional effects of a disulfide bridge insertion at the protein surface. Biophysical Chemistry, 2001, 92, 183-199.	2.8	26
81	Intensity fluctuations of the copper site resonant vibrational modes as observed by MD simulation in single plastocyanin molecule. Chemical Physics Letters, 2001, 349, 503-510.	2.6	12
82	Glasslike dynamical behavior of the plastocyanin hydration water. Physical Review E, 2000, 62, 3991-3999.	2.1	48
83	Long-term molecular dynamics simulation of copper azurin: structure, dynamics and functionality. Biophysical Chemistry, 1999, 78, 247-257.	2.8	33
84	Incoherent neutron scattering of copper azurin: a comparison with molecular dynamics simulation results. European Biophysics Journal, 1999, 28, 447-456.	2.2	44
85	Role of interfacial water in the molecular dynamics-simulated dynamical transition of plastocyanin. Chemical Physics Letters, 1998, 291, 7-14.	2.6	52
86	Water dynamical anomalies evidenced by molecular-dynamics simulations at the solvent-protein interface. Physical Review E, 1998, 57, 3315-3325.	2.1	166
87	Flickering noise in the potential energy fluctuations of proteins as investigated by MD simulation. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 236, 596-601.	2.1	25
88	Molecular dynamics simulation evidence of anomalous diffusion of protein hydration water. Physical Review E, 1996, 53, R3040-R3043.	2.1	79