

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8759741/publications.pdf Version: 2024-02-01

Hutt

#	Article	IF	CITATIONS
1	Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. Journal of Hazardous Materials, 2015, 282, 201-207.	6.5	337
2	Mechanism of Arsenic Adsorption on Magnetite Nanoparticles from Water: Thermodynamic and Spectroscopic Studies. Environmental Science & Technology, 2015, 49, 7726-7734.	4.6	314
3	Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective. Science of the Total Environment, 2020, 708, 134841.	3.9	306
4	Occurrence of pharmaceuticals in a municipal wastewater treatment plant: Mass balance and removal processes. Chemosphere, 2012, 88, 17-24.	4.2	253
5	Partition of Nonpolar Organic Pollutants from Water to Soil and Sediment Organic Matters. Environmental Science & Technology, 1995, 29, 1401-1406.	4.6	239
6	Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. Journal of Hazardous Materials, 2012, 209-210, 408-413.	6.5	229
7	Degradation of Organic Dyes via Bismuth Silver Oxide Initiated Direct Oxidation Coupled with Sodium Bismuthate Based Visible Light Photocatalysis. Environmental Science & Technology, 2012, 46, 7318-7326.	4.6	153
8	Relation of Organic Contaminant Equilibrium Sorption and Kinetic Uptake in Plants. Environmental Science & Technology, 2005, 39, 4864-4870.	4.6	147
9	Insight into the distribution of pharmaceuticals in soil-water-plant systems. Water Research, 2019, 152, 38-46.	5.3	135
10	Quantification and characterization of dissolved organic carbon from biochars. Geoderma, 2019, 335, 161-169.	2.3	130
11	Pharmaceutical and Personal Care Products: From Wastewater Treatment into Agro-Food Systems. Environmental Science & Technology, 2019, 53, 14083-14090.	4.6	120
12	Bi spheres SPR-coupled Cu2O/Bi2MoO6 with hollow spheres forming Z-scheme Cu2O/Bi/Bi2MoO6 heterostructure for simultaneous photocatalytic decontamination of sulfadiazine and Ni(II). Journal of Hazardous Materials, 2020, 381, 120953.	6.5	119
13	Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media. Journal of Contaminant Hydrology, 2011, 126, 29-36.	1.6	118
14	Sorption and Desorption of Pesticides by Clay Minerals and Humic Acid-Clay Complexes. Soil Science Society of America Journal, 2003, 67, 122.	1.2	118
15	Thermodynamics of Nitroaromatic Compound Adsorption from Water by Smectite Clay. Environmental Science & Technology, 2004, 38, 5433-5442.	4.6	110
16	Synthesis of Highly Reactive Subnano-Sized Zero-Valent Iron Using Smectite Clay Templates. Environmental Science & Technology, 2010, 44, 4258-4263.	4.6	103
17	Enhanced adsorption of bisphenol A, tylosin, and tetracycline from aqueous solution to nitrogen-doped multiwall carbon nanotubes via cation-ĭ€ and ï€-ï€ electron-donor-acceptor (EDA) interactions. Science of the Total Environment, 2020, 719, 137389.	3.9	100
18	Highly efficient photocatalytic degradation of naphthalene by Co3O4/Bi2O2CO3 under visible light: A novel p–n heterojunction nanocomposite with nanocrystals/lotus-leaf-like nanosheets structure. Applied Catalysis B: Environmental, 2018, 237, 273-287.	10.8	95

#	Article	IF	CITATIONS
19	Sorption and desorption of carbamazepine from water by smectite clays. Chemosphere, 2010, 81, 954-960.	4.2	94
20	Determination of pharmaceuticals in biosolids using accelerated solvent extraction and liquid chromatography/tandem mass spectrometry. Journal of Chromatography A, 2011, 1218, 10-16.	1.8	93
21	Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: A mechanism of pseudomicelle partition and environmental implications. Environmental Pollution, 2018, 232, 402-410.	3.7	88
22	Long-Term Effect of Different Fertilization and Cropping Systems on the Soil Antibiotic Resistome. Environmental Science & Technology, 2018, 52, 13037-13046.	4.6	88
23	Mechanistic study on uptake and transport of pharmaceuticals in lettuce from water. Environment International, 2019, 131, 104976.	4.8	87
24	Influence of Dissolved Organic Matter on Tetracycline Bioavailability to an Antibiotic-Resistant Bacterium. Environmental Science & Technology, 2015, 49, 10903-10910.	4.6	86
25	Effects of humic and fulvic acids on aggregation of aqu/nC60 nanoparticles. Water Research, 2013, 47, 1793-1802.	5.3	85
26	Role of Soil Manganese in the Oxidation of Aromatic Amines. Environmental Science & Technology, 2003, 37, 2686-2693.	4.6	84
27	Antibiotic resistance genes and bacterial communities in cornfield and pasture soils receiving swine and dairy manures. Environmental Pollution, 2019, 248, 947-957.	3.7	83
28	Photocatalytic degradation of cephalexin by ZnO nanowires under simulated sunlight: Kinetics, influencing factors, and mechanisms. Environment International, 2019, 132, 105105.	4.8	81
29	Uptake of trifluralin and lindane from water by ryegrass. Chemosphere, 2002, 48, 335-341.	4.2	80
30	Uptake and accumulation of per- and polyfluoroalkyl substances in plants. Chemosphere, 2020, 261, 127584.	4.2	80
31	Reaction of Lincosamide Antibiotics with Manganese Oxide in Aqueous Solution. Environmental Science & Technology, 2010, 44, 4486-4492.	4.6	77
32	Determination of multiple mycotoxins in paired plasma and urine samples to assess human exposure in Nanjing, China. Environmental Pollution, 2019, 248, 865-873.	3.7	72
33	Complete Defluorination of Perfluorinated Compounds by Hydrated Electrons Generated from 3-Indole-acetic-acid in Organomodified Montmorillonite. Scientific Reports, 2016, 6, 32949.	1.6	71
34	Comparison of accelerated solvent extraction and quick, easy, cheap, effective, rugged and safe method for extraction and determination of pharmaceuticals in vegetables. Journal of Chromatography A, 2015, 1404, 1-9.	1.8	68
35	An ICT-based fluorescent probe with a large Stokes shift for measuring hydrazine in biological and water samples. Environmental Pollution, 2020, 256, 113427.	3.7	67
36	A simple method for partial purification of reference clays. Clays and Clay Minerals, 2005, 53, 511-519.	0.6	65

#	Article	IF	CITATIONS
37	Determination of amprolium, carbadox, monensin, and tylosin in surface water by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2007, 21, 1944-1950.	0.7	65
38	Octachlorodibenzodioxin Formation on Fe(III)-Montmorillonite Clay. Environmental Science & Technology, 2008, 42, 4758-4763.	4.6	64
39	Influence of Smectite Hydration and Swelling on Atrazine Sorption Behavior. Environmental Science & Technology, 2005, 39, 3150-3156.	4.6	63
40	Rhamnolipid influences biosorption and biodegradation of phenanthrene by phenanthrene-degrading strain Pseudomonas sp. Ph6. Environmental Pollution, 2018, 240, 359-367.	3.7	63
41	Rapid and Extensive Debromination of Decabromodiphenyl Ether by Smectite Clay-Templated Subnanoscale Zero-Valent Iron. Environmental Science & Technology, 2012, 46, 8969-8975.	4.6	61
42	Enhanced Phototransformation of Tetracycline at Smectite Clay Surfaces under Simulated Sunlight via a Lewis-Base Catalyzed Alkalization Mechanism. Environmental Science & Technology, 2019, 53, 710-718.	4.6	60
43	Sorption and Abiotic Transformation of Aniline and α-Naphthylamine by Surface Soils. Environmental Science & Technology, 1999, 33, 1864-1870.	4.6	58
44	Geochemical Modulation of Pesticide Sorption on Smectite Clay. Environmental Science & Technology, 2004, 38, 5393-5399.	4.6	58
45	Selected Veterinary Pharmaceuticals in Agricultural Water and Soil from Land Application of Animal Manure. Journal of Environmental Quality, 2010, 39, 1211-1217.	1.0	58
46	Role of Tetracycline Speciation in the Bioavailability to <i>Escherichia coli</i> for Uptake and Expression of Antibiotic Resistance. Environmental Science & Technology, 2014, 48, 4893-4900.	4.6	57
47	Lowâ€molecularâ€weight organic acids enhance desorption of polycyclic aromatic hydrocarbons from soil. European Journal of Soil Science, 2015, 66, 339-347.	1.8	57
48	Enhanced Sorption of Trichloroethene by Smectite Clay Exchanged with Cs+. Environmental Science & Technology, 2006, 40, 894-899.	4.6	56
49	Mechanisms Associated with the High Adsorption of Dibenzo-p-dioxin from Water by Smectite Clays. Environmental Science & Technology, 2009, 43, 2777-2783.	4.6	54
50	Role of Interlayer Hydration in Lincomycin Sorption by Smectite Clays. Environmental Science & Technology, 2009, 43, 6171-6176.	4.6	50
51	Clay Mediated Route to Natural Formation of Polychlorodibenzo- <i>p</i> -dioxins. Environmental Science & Technology, 2011, 45, 3445-3451.	4.6	48
52	Pharmaceutical exposure changed antibiotic resistance genes and bacterial communities in soil-surface- and overhead-irrigated greenhouse lettuce. Environment International, 2019, 131, 105031.	4.8	48
53	Assessment of Bioavailability of Biochar-Sorbed Tetracycline to <i>Escherichia coli</i> for Activation of Antibiotic Resistance Genes. Environmental Science & amp; Technology, 2020, 54, 12920-12928.	4.6	48
54	Organic acids enhance bioavailability of tetracycline in water to Escherichia coli for uptake and expression of antibiotic resistance. Water Research, 2014, 65, 98-106.	5.3	47

#	Article	IF	CITATIONS
55	Micropore clogging by leachable pyrogenic organic carbon: A new perspective on sorption irreversibility and kinetics of hydrophobic organic contaminants to black carbon. Environmental Pollution, 2017, 220, 1349-1358.	3.7	47
56	Exchangeable Cation Hydration Properties Strongly Influence Soil Sorption of Nitroaromatic Compounds. Soil Science Society of America Journal, 2006, 70, 1470-1479.	1.2	46
57	Spectroscopic Study of Carbaryl Sorption on Smectite from Aqueous Suspension. Environmental Science & Technology, 2005, 39, 9123-9129.	4.6	42
58	Enhanced Photoreduction of Nitro-aromatic Compounds by Hydrated Electrons Derived from Indole on Natural Montmorillonite. Environmental Science & amp; Technology, 2015, 49, 7784-7792.	4.6	42
59	Effect of Substitution on Irreversible Binding and Transformation of Aromatic Amines with Soils in Aqueous Systems. Environmental Science & Technology, 2000, 34, 3674-3680.	4.6	41
60	Bioavailability of Soil-Sorbed Tetracycline to <i>Escherichia coli</i> under Unsaturated Conditions. Environmental Science & Technology, 2017, 51, 6165-6173.	4.6	41
61	Composting increased persistence of manure-borne antibiotic resistance genes in soils with different fertilization history. Science of the Total Environment, 2019, 689, 1172-1180.	3.9	40
62	The dissipation and risk alleviation mechanism of PAHs and nitrogen in constructed wetlands: The role of submerged macrophytes and their biofilms-leaves. Environment International, 2019, 131, 104940.	4.8	40
63	Prioritization of antibiotic contaminants in China based on decennial national screening data and their persistence, bioaccumulation and toxicity. Science of the Total Environment, 2022, 806, 150636.	3.9	40
64	Initial sorption of aromatic amines to surface soils. Environmental Toxicology and Chemistry, 1997, 16, 1575-1582.	2.2	39
65	Modeling Short-Term Soilâ^'Water Distribution of Aromatic Amines. Environmental Science & Technology, 1998, 32, 2788-2794.	4.6	39
66	Probing the microscopic hydrophobicity of smectite surfaces. A vibrational spectroscopic study of dibenzo-p-dioxin sorption to smectite. Physical Chemistry Chemical Physics, 2009, 11, 2976.	1.3	39
67	Pentachlorophenol Radical Cations Generated on Fe(III)-Montmorillonite Initiate Octachlorodibenzo- <i>p</i> -dioxin Formation in Clays: Density Functional Theory and Fourier Transform Infrared Studies. Environmental Science & Technology, 2011, 45, 1399-1406.	4.6	39
68	High adsorption and efficient visible-light-photodegradation for cationic Rhodamine B with microspheric BiOI photocatalyst. RSC Advances, 2014, 4, 42530-42537.	1.7	39
69	Long-term sorption of lincomycin to biochars: The intertwined roles of pore diffusion and dissolved organic carbon. Water Research, 2019, 161, 108-118.	5.3	39
70	TRIAZINE ADSORPTION BY SAPONITE AND BEIDELLITE CLAY MINERALS. Environmental Toxicology and Chemistry, 2006, 25, 392.	2.2	38
71	Probing the Specific Sorption Sites on Montmorillonite Using Nitroaromatic Compounds and Hexafluorobenzene. Environmental Science & amp; Technology, 2011, 45, 2209-2216.	4.6	38
72	Measurement of associations of pharmaceuticals with dissolved humic substances using solid phase extraction. Chemosphere, 2013, 91, 314-319.	4.2	36

#	Article	IF	CITATIONS
73	Sorption of Lincomycin by Manure-Derived Biochars from Water. Journal of Environmental Quality, 2016, 45, 519-527.	1.0	36
74	Improved prediction of the bioconcentration factors of organic contaminants from soils into plant/crop roots by related physicochemical parameters. Environment International, 2019, 126, 46-53.	4.8	36
75	Integrating Structural and Thermodynamic Mechanisms for Sorption of PCBs by Montmorillonite. Environmental Science & Technology, 2015, 49, 2796-2805.	4.6	35
76	Mechanism Associated with Kaolinite Intercalation with Urea: Combination of Infrared Spectroscopy and Molecular Dynamics Simulation Studies. Journal of Physical Chemistry C, 2017, 121, 402-409.	1.5	35
77	Uptake and Accumulation of Pharmaceuticals in Overhead- and Surface-Irrigated Greenhouse Lettuce. Journal of Agricultural and Food Chemistry, 2018, 66, 822-830.	2.4	34
78	Effects of Increasing Potassium Chloride and Calcium Chloride Ionic Strength on Pesticide Sorption by Potassium- and Calcium-Smectite. Soil Science Society of America Journal, 2006, 70, 1889-1895.	1.2	33
79	Comparison of Reactivity of Nanoscaled Zeroâ€Valent Iron Formed on Clay Surfaces. Soil Science Society of America Journal, 2011, 75, 357-364.	1.2	33
80	Role of pH in partitioning and cation exchange of aromatic amines on water-saturated soils. Chemosphere, 2001, 44, 627-635.	4.2	31
81	lonic Strength-Induced Formation of Smectite Quasicrystals Enhances Nitroaromatic Compound Sorption. Environmental Science & Technology, 2007, 41, 1251-1256.	4.6	31
82	Ethyl lactate enhances ethylenediaminedisuccinic acid solution removal of copper from contaminated soils. Journal of Hazardous Materials, 2010, 174, 59-63.	6.5	31
83	Effects of dissolved organic matter from sewage sludge on sorption of tetrabromobisphenol A by soils. Journal of Environmental Sciences, 2008, 20, 1075-1081.	3.2	29
84	Potential metabolism of pharmaceuticals in radish: Comparison of inÂvivo and inÂvitro exposure. Environmental Pollution, 2018, 242, 962-969.	3.7	28
85	Application of surfactant modified montmorillonite with different conformation for photo-treatment of perfluorooctanoic acid by hydrated electrons. Chemosphere, 2019, 235, 1180-1188.	4.2	28
86	Sorption of nitroaromatics by ammonium- and organic ammonium-exchanged smectite: shifts from adsorption/complexation to a partition-dominated process. Clays and Clay Minerals, 2006, 54, 426-434.	0.6	26
87	Simultaneous Removal of Polycyclic Aromatic Hydrocarbons and Copper from Soils using Ethyl Lactateâ€Amended EDDS Solution. Journal of Environmental Quality, 2009, 38, 1591-1597.	1.0	26
88	Sorption of Lincomycin at Low Concentrations from Water by Soils. Soil Science Society of America Journal, 2012, 76, 1222-1228.	1.2	26
89	A Fast and Easily Parallelizable Biosensor Method for Measuring Extractable Tetracyclines in Soils. Environmental Science & Technology, 2020, 54, 758-767.	4.6	26
90	Characterization of Plant Accumulation of Pharmaceuticals from Soils with Their Concentration in Soil Pore Water. Environmental Science & Technology, 2022, 56, 9346-9355.	4.6	26

#	Article	IF	CITATIONS
91	Degradation of selected polychlorinated biphenyls by montmorillonite clay-templated Fe0/Ni0 bimetallic system. Chemical Engineering Journal, 2015, 276, 122-129.	6.6	25
92	Direct Prediction of Bioaccumulation of Organic Contaminants in Plant Roots from Soils with Machine Learning Models Based on Molecular Structures. Environmental Science & Technology, 2021, 55, 16358-16368.	4.6	25
93	Interactions between carbon nanotubes and sulfonamide antibiotics in aqueous solutions under various physicochemical conditions. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 1136-1144.	0.9	24
94	Sphingomonas wittichii Strain RW1 Genome-Wide Gene Expression Shifts in Response to Dioxins and Clay. PLoS ONE, 2016, 11, e0157008.	1.1	24
95	Metabolic Demethylation and Oxidation of Caffeine during Uptake by Lettuce. Journal of Agricultural and Food Chemistry, 2018, 66, 7907-7915.	2.4	24
96	Relating Clay Structural Factors to Dioxin Adsorption by Smectites: Molecular Dynamics Simulations. Soil Science Society of America Journal, 2012, 76, 110-120.	1.2	23
97	Interactions of Gaseous 2-Chlorophenol with Fe3+-Saturated Montmorillonite and Their Toxicity to Human Lung Cells. Environmental Science & Technology, 2018, 52, 5208-5217.	4.6	22
98	Oxidation of polycyclic aromatic hydrocarbons by horseradish peroxidase in water containing an organic cosolvent. Environmental Science and Pollution Research, 2014, 21, 10696-10705.	2.7	20
99	Quantifying the Availability of Clay Surfaces in Soils for Adsorption of Nitrocyanobenzene and Diuron. Environmental Science & Technology, 2006, 40, 7751-7756.	4.6	19
100	Effect of pH on degradation of acetaminophen and production of 1,4-benzoquinone in water chlorination. Journal of Water Supply: Research and Technology - AQUA, 2008, 57, 381-390.	0.6	19
101	Bioavailability of tetracycline to antibiotic resistant Escherichia coli in water-clay systems. Environmental Pollution, 2018, 243, 1078-1086.	3.7	18
102	Low-Molecular-Weight Organic Acids Influence the Sorption of Phenanthrene by Different Soil Particle Size Fractions. Journal of Environmental Quality, 2015, 44, 219-227.	1.0	17
103	Hydrolysis of Carbaryl by Carbonate Impurities in Reference Clay SWy-2. Journal of Agricultural and Food Chemistry, 2004, 52, 8066-8073.	2.4	16
104	Sources, Interactions, and Ecological Impacts of Organic Contaminants in Water, Soil, and Sediment: An Introduction to the Special Series. Journal of Environmental Quality, 2010, 39, 1133-1138.	1.0	16
105	Uptake, translocation and metabolism of imidacloprid loaded within fluorescent mesoporous silica nanoparticles in tomato (Solanum lycopersicum). Ecotoxicology and Environmental Safety, 2022, 232, 113243.	2.9	16
106	Modeling Competitive Cation Exchange of Aromatic Amines in Water-Saturated Soils. Environmental Science &	4.6	15
107	Geochemical Modulation of Bioavailability and Toxicity of Nitroaromatic Compounds to Aquatic Plants. Environmental Science & Technology, 2007, 41, 1641-1645.	4.6	15
108	Deposition, dissipation, metabolism and dietary risk assessment of chlorothalonil in open field-planted cabbage. Journal of Food Composition and Analysis, 2021, 102, 104008.	1.9	15

#	Article	IF	CITATIONS
109	Uptake, subcellular distribution and metabolism of 14C-caffeine in leafy vegetables from water. Journal of Hazardous Materials, 2021, 414, 125501.	6.5	14
110	Implication of cation-bridging interaction contribution to sorption of perfluoroalkyl carboxylic acids by soils. Chemosphere, 2022, 290, 133224.	4.2	14
111	Environmental Antibiotics and Antibiotic Resistance: From Problems to Solutions. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	3.3	13
112	Comparing root concentration factors of antibiotics for lettuce (Lactuca sativa) measured in rhizosphere and bulk soils. Chemosphere, 2021, 262, 127677.	4.2	12
113	Uptake of cephalexin by lettuce, celery, and radish from water. Chemosphere, 2021, 263, 127916.	4.2	12
114	Modeling Abiotic Processes of Aniline in Water-Saturated Soils. Environmental Science & Technology, 2000, 34, 1687-1693.	4.6	11
115	REDUCING BIOAVAILABILITY AND PHYTOTOXICITY OF 2,4-DINITROTOLUENE BY SORPTION ON K-SMECTITE CLAY. Environmental Toxicology and Chemistry, 2007, 26, 358.	2.2	11
116	Effect of groundwater geochemistry on pentachlorophenol remediation by smectite-templated nanosized Pd0/Fe0. Environmental Science and Pollution Research, 2012, 19, 3498-3505.	2.7	10
117	Role of Smectite Quasicrystal Dynamics in Adsorption of Dinitrophenol. Soil Science Society of America Journal, 2008, 72, 347-354.	1.2	10
118	Removal of phenanthrene and acenaphthene from aqueous solution by enzyme-catalyzed phenol coupling reaction. Chemical Engineering Journal, 2015, 265, 27-33.	6.6	9
119	Plant Root Exudates Decrease Mobility of Smectite Colloids in Porous Media in Contrast to Humic Acid. Soil Science Society of America Journal, 2015, 79, 467-475.	1.2	9
120	TCDD administered on activated carbon eliminates bioavailability and subsequent shifts to a key murine gut commensal. Applied Microbiology and Biotechnology, 2017, 101, 7409-7415.	1.7	9
121	Synthesis and evaluation of Fe3O4-impregnated activated carbon for dioxin removal. Chemosphere, 2021, 263, 128263.	4.2	9
122	Suppression of humoral immune responses by 2,3,7,8â€ŧetrachlorodibenzoâ€ <i>p</i> â€dioxin intercalated in smectite clay. Environmental Toxicology and Chemistry, 2011, 30, 2748-2755.	2.2	8
123	Variation of Microbial Communities in Aquatic Sediments under Long-Term Exposure to Decabromodiphenyl Ether and UVA Irradiation. Sustainability, 2019, 11, 3773.	1.6	8
124	Mechanism of Dinitrophenol Herbicide Sorption by Smectites in Aqueous Suspensions at Varying pH. Soil Science Society of America Journal, 2007, 71, 1476-1481.	1.2	7
125	Sequestration of 2,3,7,8â€tetrachlorodibenzoâ€ <i>p</i> â€dioxin by activated carbon eliminates bioavailability and the suppression of immune function in mice. Environmental Toxicology and Chemistry, 2017, 36, 2671-2678.	2.2	7
126	Characterization of a Sequential UV Photolysis-Biodegradation Process for Treatment of Decabrominated Diphenyl Ethers in Sorbent/Water Systems. Microorganisms, 2020, 8, 633.	1.6	7

#	Article	IF	CITATIONS
127	Natural organic matter does not diminish the mammalian bioavailability of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Chemosphere, 2021, 264, 128420.	4.2	7
128	Fractional Availability of Smectite Surfaces in Soils for Adsorption of Nitroaromatic Compounds in Relation to Soil and Solute Properties. Soil Science Society of America Journal, 2008, 72, 586-594.	1.2	6
129	Activated carbons of varying pore structure eliminate the bioavailability of 2,3,7,8-tetrachlorodibenzo-p-dioxin to a mammalian (mouse) model. Science of the Total Environment, 2019, 650, 2231-2238.	3.9	6
130	Bioavailability of clay-adsorbed dioxin to Sphingomonas wittichii RW1 and its associated genome-wide shifts in gene expression. Science of the Total Environment, 2020, 712, 135525.	3.9	6
131	Sorption of Aromatic Ionizable Organic Compounds to Montmorillonites Modified by Hexadecyltrimethyl Ammonium and Polydiallyldimethyl Ammonium. Journal of Environmental Quality, 2011, 40, 1895-1902.	1.0	5
132	Sorption of Tetracycline to Varying-Sized Montmorillonite Fractions. Journal of Environmental Quality, 2014, 43, 2079-2085.	1.0	5
133	NaCl salinity enhances tetracycline bioavailability to Escherichia coli on agar surfaces. Chemosphere, 2022, 302, 134921.	4.2	2
134	Agro-environmental contamination, food safety and human health: An introduction to the special issue. Environment International, 2021, 157, 106812.	4.8	1
135	Polymer Technology for the Detection and Elimination of Emerging Pollutants. Advances in Polymer Technology, 2020, 2020, 1-2.	0.8	0