Pengli Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/875963/publications.pdf

Version: 2024-02-01

61	2,447	24 h-index	37
papers	citations		g-index
61	61	61	3197 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano Energy, 2020, 70, 104436.	8.2	344
2	Highly Sensitive Flexible Pressure Sensor Based on Silver Nanowires-Embedded Polydimethylsiloxane Electrode with Microarray Structure. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26314-26324.	4.0	234
3	Flexible Asymmetrical Solid-State Supercapacitors Based on Laboratory Filter Paper. ACS Nano, 2016, 10, 1273-1282.	7.3	215
4	Flexible and Highly Sensitive Pressure Sensor Based on Microdome-Patterned PDMS Forming with Assistance of Colloid Self-Assembly and Replica Technique for Wearable Electronics. ACS Applied Materials & Diterraces, 2017, 9, 35968-35976.	4.0	200
5	Ultrathin Densified Carbon Nanotube Film with "Metal-like―Conductivity, Superior Mechanical Strength, and Ultrahigh Electromagnetic Interference Shielding Effectiveness. ACS Nano, 2020, 14, 14134-14145.	7.3	162
6	A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer. Journal of Materials Chemistry C, 2018, 6, 13232-13240.	2.7	160
7	Facile Preparation of Monodisperse, Impurity-Free, and Antioxidation Copper Nanoparticles on a Large Scale for Application in Conductive Ink. ACS Applied Materials & Samp; Interfaces, 2014, 6, 560-567.	4.0	129
8	A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring. Nano Research, 2018, 11, 1938-1955.	5.8	99
9	Highly transparent triboelectric nanogenerator utilizing in-situ chemically welded silver nanowire network as electrode for mechanical energy harvesting and body motion monitoring. Nano Energy, 2019, 59, 508-516.	8.2	69
10	Room-Temperature Nanowelding of a Silver Nanowire Network Triggered by Hydrogen Chloride Vapor for Flexible Transparent Conductive Films. ACS Applied Materials & Enterfaces, 2017, 9, 40857-40867.	4.0	68
11	Exfoliation and Defect Control of Two-Dimensional Few-Layer MXene Ti ₃ C ₂ T <i>_x</i> for Electromagnetic Interference Shielding Coatings. ACS Applied Materials & Diterfaces, 2020, 12, 49737-49747.	4.0	64
12	Electrodeposition of Co(OH) ₂ Improving Carbonized Melamine Foam Performance for Compressible Supercapacitor Application. ACS Sustainable Chemistry and Engineering, 2019, 7, 16803-16813.	3.2	54
13	Highly sensitive flexible capacitive pressure sensor with a broad linear response range and finite element analysis of micro-array electrode. Journal of Materiomics, 2020, 6, 321-329.	2.8	50
14	Tailorable, Lightweight and Superelastic Liquid Metal Monoliths for Multifunctional Electromagnetic Interference Shielding. Nano-Micro Letters, 2022, 14, 29.	14.4	49
15	Highly Sensitive and Stretchable Strain Sensor Based on a Synergistic Hybrid Conductive Network. ACS Applied Materials & Diterfaces, 2020, 12, 42420-42429.	4.0	46
16	Preparation of large micron-sized monodisperse polystyrene/silver core–shell microspheres with compact shell structure and their electrical conductive and catalytic properties. RSC Advances, 2015, 58-67.	1.7	37
17	A Highly Sensitive and Costâ€Effective Flexible Pressure Sensor with Micropillar Arrays Fabricated by Novel Metalâ€Assisted Chemical Etching for Wearable Electronics. Advanced Materials Technologies, 2019, 4, 1900367.	3.0	34
18	PVP-Mediated Galvanic Replacement Synthesis of Smart Elliptic Cu–Ag Nanoflakes for Electrically Conductive Pastes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8382-8390.	4.0	32

#	Article	IF	CITATIONS
19	A flexible pressure sensor based on melamine foam capped by copper nanowires and reduced graphene oxide. Materials Today Communications, 2020, 24, 100970.	0.9	32
20	Facile and Efficient Welding of Silver Nanowires Based on UVAâ€Induced Nanoscale Photothermal Process for Rollâ€toâ€Roll Manufacturing of Highâ€Performance Transparent Conducting Films. Advanced Materials Interfaces, 2019, 6, 1801635.	1.9	30
21	A cobalt hydroxide-based compressible electrode material for asymmetrical all-solid supercapacitors. Sustainable Energy and Fuels, 2018, 2, 2345-2357.	2.5	30
22	Flexible and Highly Sensitive Pressure Sensors with Surface Discrete Microdomes Made from Selfâ€Assembled Polymer Microspheres Array. Macromolecular Chemistry and Physics, 2020, 221, 2000073.	1.1	30
23	Laboratory filter paper as a substrate material for flexible supercapacitors. Sustainable Energy and Fuels, 2018, 2, 147-154.	2.5	27
24	Enhanced oxidation resistance and electrical conductivity copper nanowires–graphene hybrid films for flexible strain sensors. New Journal of Chemistry, 2017, 41, 4950-4958.	1.4	25
25	Versatile Biomass Carbon Foams for Fast Oil–Water Separation, Flexible Pressure-Strain Sensors, and Electromagnetic Interference Shielding. Industrial & Engineering Chemistry Research, 2020, 59, 20740-20748.	1.8	25
26	Transparent and flexible hybrid nanogenerator with welded silver nanowire networks as the electrodes for mechanical energy harvesting and physiological signal monitoring. Smart Materials and Structures, 2020, 29, 045040.	1.8	25
27	Cationic Polyelectrolyte Bridged Boron Nitride Microplatelet Based Poly(vinyl alcohol) Composite: A Novel Method toward High Thermal Conductivity. Advanced Materials Interfaces, 2019, 6, 1900787.	1.9	24
28	Multidimensional Ternary Hybrids with Synergistically Enhanced Electrical Performance for Conductive Nanocomposites and Prosthetic Electronic Skin. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38493-38505.	4.0	23
29	Flexible, Highly Sensitive, and Ultrafast Responsive Pressure Sensor with Stochastic Microstructures for Human Health Monitoring. Advanced Engineering Materials, 2021, 23, 2000902.	1.6	20
30	Investigation on the structural quality dependent electromagnetic interference shielding performance of few-layer and lamellar Nb2CTx MXene nanostructures. Journal of Alloys and Compounds, 2021, 877, 160235.	2.8	19
31	Alumina-Coated Cu@Reduced Graphene Oxide Microspheres as Enhanced Antioxidative and Electrically Insulating Fillers for Thermal Interface Materials with High Thermal Conductivity. ACS Applied Electronic Materials, 2019, 1, 1330-1335.	2.0	17
32	Low Temperature Sintered Silver Nanoflake Paste for Power Device Packaging and Its Anisotropic Sintering Mechanism. ACS Applied Electronic Materials, 2021, 3, 5365-5373.	2.0	10
33	CuCl2and stainless steel synergistically assisted synthesis of high-purity silver nanowires on a large scale. RSC Advances, 2014, 4, 47536-47539.	1.7	8
34	Rapid metallization by copper electroplating on insulating substrate using silver nanowires conductive composite as seed layer. Composites Communications, 2021, 27, 100819.	3.3	8
35	Synergistic size and shape effect of dendritic silver nanostructures for low-temperature sintering of paste as die attach materials. Journal of Materials Science: Materials in Electronics, 2021, 32, 323-336.	1.1	8
36	Facile and scalable fabrication of self-assembled Cu architecture with superior antioxidative properties and improved sinterability as a conductive ink for flexible electronics. Nanotechnology, 2019, 30, 355601.	1.3	6

#	Article	IF	CITATIONS
37	Ultrathin Manganese Dioxide Nanosheets Grown on Mesoporous Carbon Hollow Spheres for High Performance Asymmetrical Supercapacitors. ACS Applied Energy Materials, 0, , .	2.5	5
38	Characterization and Verification of Viscoelastic Constitutive Parameters of Underfill Material., 2021,,.		5
39	Improved Reliability of Silver Nanowire-Based Composites by Electroplating: A Theoretical and Experimental Study. ACS Applied Electronic Materials, 2021, 3, 3329-3337.	2.0	4
40	Synthesis of Air-Sinterable Copper Nanoparticles for Die-Attachment., 2021,,.		3
41	Comparative Analysis of Temperature-induced Micro-scale Deformation of Package by Experiment and Finite Element Analysis. , 2021, , .		3
42	In-Situ Redox Nanowelding of Copper Nanowires with Surficial Oxide Layer as Solder for Flexible Transparent Electromagnetic Interference Shielding. , 2019, , .		2
43	Pressureless and low temperature sintering by Ag paste for the high temperature die-attachment in power device packaging., 2022,,.		2
44	Reconstructing more sinterable surfaces for copper nanoparticles to form high-strength Cu-Cu joints in air atmosphere. , 2022, , .		2
45	Electromagnetic Interference Shielding Properties of 2D MXene (Ti3C2Tx) by Metal nanoparticles Loading. , 2019, , .		1
46	Preparation and Low Temperature Sintering of Silver Nanoparticles Based Pastes for Power Semiconductor Device Interaction. , 2020, , .		1
47	Stretchable and Printable Conductive Polymer Composites for Electromagnetic Interference (EMI) Shielding Meshes. , 2020, , .		1
48	Lightweight and Flexible Fe ₃ O ₄ /MXene/Cellulose Nanofiber Film with Gradient and Sandwich Structure for Superior EMI Shielding Properties., 2020,,.		1
49	Investigation into Electrical Conductivity and Electromagnetic Interference Shielding Performance of Ag/TPU Hybrids Filled with Various Silver Fillers. , 2021, , .		1
50	Underfill Filler Settling Effect on the Adhesive Force of Flip Chip Packages. , 2021, , .		1
51	Effects of Surface Oxidation Treatments on the Interfacial Adhesion between Copper and Underfill. , 2021, , .		1
52	The Effect of Toughening Agents on Capillary Underfill in the Flip Chip Package. , 2021, , .		1
53	Cost-Efficient Formation of Flexible Pressure Sensor with Micropillar Arrays by Metal-Assisted Chemical Etching for Wearable Electronic Skin. , 2018, , .		0
54	Copper nanoplates based conductive paste as die attachment materials for power semiconductor device package. , $2019, \ldots$		0

#	Article	IF	Citations
55	Study on conductive paste of silver particles for power semiconductor devices package. , 2019, , .		O
56	Low-temperature MOD assisted sintering of Ag nanoparticles for power device die-attach., 2021,,.		O
57	Cu-Cu joint formation by sintering of self-reducible Cu nanoparticle paste assisted by MOD under air condition., 2021,,.		0
58	The Particle Interaction Analysis for Nanoparticles in Underfill for Flip-Chip Packaging, 2021,,.		0
59	Interaction of silane coupling agents with nano-silica probed by nano-IR*., 2021,,.		O
60	Key factor analysis of nano silica on the dispersion in underfill. , 2021, , .		0
61	Anisotropy of curing residual stress of underfill in the encapsulation under three-dimensionally constrained condition based on in-situ characterization. , 2022, , .		0