
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8759615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atrial nitroso-redox balance and refractoriness following on-pump cardiac surgery: a randomized trial of atorvastatin. Cardiovascular Research, 2022, 118, 184-195.	3.8	9
2	Hepatic miR-144 Drives Fumarase Activity Preventing NRF2 Activation During Obesity. Gastroenterology, 2021, 161, 1982-1997.e11.	1.3	34
3	Hyperglycemia Induces Trained Immunity in Macrophages and Their Precursors and Promotes Atherosclerosis. Circulation, 2021, 144, 961-982.	1.6	109
4	Endothelial GTPCH (GTP Cyclohydrolase 1) and Tetrahydrobiopterin Regulate Gestational Blood Pressure, Uteroplacental Remodeling, and Fetal Growth. Hypertension, 2021, 78, 1871-1884.	2.7	10
5	ltaconate as an inflammatory mediator and therapeutic target in cardiovascular medicine. Biochemical Society Transactions, 2021, 49, 2189-2198.	3.4	7
6	Nitric oxide modulates cardiomyocyte pH control through a biphasic effect on sodium/hydrogen exchanger-1. Cardiovascular Research, 2020, 116, 1958-1971.	3.8	16
7	Isolation and culture of murine bone marrow-derived macrophages for nitric oxide and redox biology. Nitric Oxide - Biology and Chemistry, 2020, 100-101, 17-29.	2.7	37
8	Nitric Oxide Modulates Metabolic Remodeling in Inflammatory Macrophages through TCA Cycle Regulation and Itaconate Accumulation. Cell Reports, 2019, 28, 218-230.e7.	6.4	149
9	Oxidation resistance 1 regulates post-translational modifications of peroxiredoxin 2 in the cerebellum. Free Radical Biology and Medicine, 2019, 130, 151-162.	2.9	23
10	Roles for endothelial cell and macrophage Gch1 and tetrahydrobiopterin in atherosclerosis progression. Cardiovascular Research, 2018, 114, 1385-1399.	3.8	38
11	Effects Of Endothelin-1 On Intracellular Tetrahydrobiopterin Levels In Vascular Tissue. Scandinavian Cardiovascular Journal, 2018, 52, 163-169.	1.2	4
12	Regulation of mycobacterial infection by macrophage Gch1 and tetrahydrobiopterin. Nature Communications, 2018, 9, 5409.	12.8	24
13	Tetrahydrobiopterin modulates ubiquitin conjugation to UBC13/UBE2N and proteasome activity by S-nitrosation. Scientific Reports, 2018, 8, 14310.	3.3	5
14	A key role for tetrahydrobiopterinâ€dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterinâ€deficient mice. British Journal of Pharmacology, 2017, 174, 657-671.	5.4	37
15	A novel role for endothelial tetrahydrobiopterin in mitochondrial redox balance. Free Radical Biology and Medicine, 2017, 104, 214-225.	2.9	49
16	Protection against ventricular fibrillation via cholinergic receptor stimulation and the generation of nitric oxide. Journal of Physiology, 2016, 594, 3981-3992.	2.9	25
17	Mildly compromised tetrahydrobiopterin cofactor biosynthesis due to <i>Pts</i> variants leads to unusual body fat distribution and abdominal obesity in mice. Journal of Inherited Metabolic Disease, 2016, 39, 309-319.	3.6	10
18	A requirement for Gch1 and tetrahydrobiopterin in embryonic development. Developmental Biology, 2015, 399, 129-138.	2.0	30

#	Article	IF	CITATIONS
19	Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation. Free Radical Biology and Medicine, 2015, 79, 206-216.	2.9	115
20	Parkinson's disease in GTP cyclohydrolase 1 mutation carriers. Brain, 2015, 138, e348-e348.	7.6	4
21	CAPON Modulates Neuronal Calcium Handling and Cardiac Sympathetic Neurotransmission During Dysautonomia in Hypertension. Hypertension, 2015, 65, 1288-1297.	2.7	21
22	Molecular mechanisms of myocardial nitroso-redox imbalance during on-pump cardiac surgery. Lancet, The, 2015, 385, S49.	13.7	7
23	Overexpression of GTP Cyclohydrolase 1 Feedback Regulatory Protein Is Protective in a Murine Model of Septic Shock. Shock, 2014, 42, 432-439.	2.1	11
24	Endothelial Cell–Specific Reactive Oxygen Species Production Increases Susceptibility to Aortic Dissection. Circulation, 2014, 129, 2661-2672.	1.6	96
25	α-Synuclein and mitochondrial bioenergetics regulate tetrahydrobiopterin levels in a human dopaminergic model of Parkinson disease. Free Radical Biology and Medicine, 2014, 67, 58-68.	2.9	26
26	Cell-Autonomous Role of Endothelial GTP Cyclohydrolase 1 and Tetrahydrobiopterin in Blood Pressure Regulation. Hypertension, 2014, 64, 530-540.	2.7	50
27	Tetrahydrobiopterin in Cardiovascular Health and Disease. Antioxidants and Redox Signaling, 2014, 20, 3040-3077.	5.4	181
28	Abstract 167: A Cell-Autonomous Role for Endothelial GTP Cyclohydrolase 1 and Tetrahydrobiopterin in Blood Pressure Regulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	2.4	0
29	Abstract 13082: On-Pump Cardiac Surgery in Humans Induces Myocardial Nitric Oxide Synthase Dysfunction via S-Glutathionylation of eNOS. Circulation, 2014, 130, .	1.6	0
30	Nitric Oxide Synthases in Heart Failure. Antioxidants and Redox Signaling, 2013, 18, 1078-1099.	5.4	137
31	Integrated Redox Sensor and Effector Functions for Tetrahydrobiopterin- and Glutathionylation-dependent Endothelial Nitric-oxide Synthase Uncoupling. Journal of Biological Chemistry, 2013, 288, 561-569.	3.4	75
32	Endothelial cell repopulation after stenting determines in-stent neointima formation: effects of bare-metal vs. drug-eluting stents and genetic endothelial cell modification. European Heart Journal, 2013, 34, 3378-3388.	2.2	58
33	A Pivotal Role for Tryptophan 447 in Enzymatic Coupling of Human Endothelial Nitric Oxide Synthase (eNOS). Journal of Biological Chemistry, 2013, 288, 29836-29845.	3.4	20
34	Gene Delivery Strategies Targeting Stable Atheromatous Plaque. Current Pharmaceutical Design, 2013, 19, 1626-1637.	1.9	4
35	Regulation of Endothelial Nitric-oxide Synthase (NOS) S-Glutathionylation by Neuronal NOS. Journal of Biological Chemistry, 2012, 287, 43665-43673.	3.4	42
36	Cardiomyocyte GTP Cyclohydrolase 1 and Tetrahydrobiopterin Increase NOS1 Activity and Accelerate Myocardial Relaxation. Circulation Research, 2012, 111, 718-727.	4.5	38

#	Article	IF	CITATIONS
37	Systemic and Vascular Oxidation Limits the Efficacy of Oral Tetrahydrobiopterin Treatment in Patients With Coronary Artery Disease. Circulation, 2012, 125, 1356-1366.	1.6	144
38	Endothelial-specific Nox2 overexpression increases vascular superoxide and macrophage recruitment in ApoEâ^'/â^' mice. Cardiovascular Research, 2012, 94, 20-29.	3.8	93
39	Recoupling the Cardiac Nitric Oxide Synthases: Tetrahydrobiopterin Synthesis and Recycling. Current Heart Failure Reports, 2012, 9, 200-210.	3.3	107
40	Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease. Nitric Oxide - Biology and Chemistry, 2011, 25, 81-88.	2.7	180
41	Gene Therapy Targeting Inflammation in Atherosclerosis. Current Pharmaceutical Design, 2011, 17, 4210-4223.	1.9	42
42	Dihydrofolate reductase protects endothelial nitric oxide synthase from uncoupling in tetrahydrobiopterin deficiency. Free Radical Biology and Medicine, 2011, 50, 1639-1646.	2.9	93
43	Targeting Vascular Redox Biology Through Antioxidant Gene Delivery: A Historical View and Current Perspectives. Recent Patents on Cardiovascular Drug Discovery, 2011, 6, 89-102.	1.5	6
44	Tetrahydrobiopterin supplementation reduces atherosclerosis and vascular inflammation in apolipoprotein E-knockout mice. Clinical Science, 2010, 119, 131-142.	4.3	37
45	GTP Cyclohydrolase I Expression, Protein, and Activity Determine Intracellular Tetrahydrobiopterin Levels, Independent of GTP Cyclohydrolase Feedback Regulatory Protein Expression. Journal of Biological Chemistry, 2009, 284, 13660-13668.	3.4	54
46	Quantitative Regulation of Intracellular Endothelial Nitric-oxide Synthase (eNOS) Coupling by Both Tetrahydrobiopterin-eNOS Stoichiometry and Biopterin Redox Status. Journal of Biological Chemistry, 2009, 284, 1136-1144.	3.4	171
47	Critical Role for Tetrahydrobiopterin Recycling by Dihydrofolate Reductase in Regulation of Endothelial Nitric-oxide Synthase Coupling. Journal of Biological Chemistry, 2009, 284, 28128-28136.	3.4	184
48	Dihydrofolate reductase and biopterin recycling in cardiovascular disease. Journal of Molecular and Cellular Cardiology, 2009, 47, 749-751.	1.9	10
49	Ratio of 5,6,7,8-tetrahydrobiopterin to 7,8-dihydrobiopterin in endothelial cells determines glucose-elicited changes in NO vs. superoxide production by eNOS. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1530-H1540.	3.2	176
50	Profound biopterin oxidation and protein tyrosine nitration in tissues of ApoE-null mice on an atherogenic diet: contribution of inducible nitric oxide synthase. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2878-H2887.	3.2	32
51	Altered Plasma Versus Vascular Biopterins in Human Atherosclerosis Reveal Relationships Between Endothelial Nitric Oxide Synthase Coupling, Endothelial Function, and Inflammation. Circulation, 2007, 116, 2851-2859.	1.6	138
52	Nitrosative Stress and Myocardial Sarcoplasmic Endoreticular Calcium Adenosine Triphosphatase Subtype 2a Activity after Lung Resection in Swine. Anesthesiology, 2007, 107, 954-962.	2.5	13
53	Contribution of inducible nitric oxide synthase to protein tyrosine nitration and biopterin oxidation in ApoEâ€null mice. FASEB Journal, 2007, 21, A1146.	0.5	0
54	Systemic oxidative stress associated with lung resection during single lung ventilation. European Journal of Cardio-thoracic Surgery, 2006, 30, 568-569.	1.4	4

#	Article	IF	CITATIONS
55	Prevention and Reversal of Premature Endothelial Cell Senescence and Vasculopathy in Obesity-Induced Diabetes by Ebselen. Circulation Research, 2004, 94, 377-384.	4.5	195
56	Nephropathy in Zucker Diabetic Fat Rat Is Associated with Oxidative and Nitrosative Stress. Journal of the American Society of Nephrology: JASN, 2004, 15, 2391-2403.	6.1	166
57	Involvement of mitochondria in acetaminophen-induced apoptosis and hepatic injury. Toxicology and Applied Pharmacology, 2003, 191, 118-129.	2.8	141
58	Detection of Cysteine S-Nitrosylation and Tyrosine 3-Nitration in Kidney Proteins. , 2003, 86, 373-384.		6