Mehmet Gültas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8759154/publications.pdf Version: 2024-02-01

MEHMET CÃI/11TAS

#	Article	IF	CITATIONS
1	Comparative Investigation of Gene Regulatory Processes Underlying Avian Influenza Viruses in Chicken and Duck. Biology, 2022, 11, 219.	2.8	3
2	agReg-SNPdb-Plants: A Database of Regulatory SNPs for Agricultural Plant Species. Biology, 2022, 11, 684.	2.8	0
3	Deciphering the Molecular Mechanism Underlying African Animal Trypanosomiasis by Means of the 1000 Bull Genomes Project Genomic Dataset. Biology, 2022, 11, 742.	2.8	1
4	Deciphering Pleiotropic Signatures of Regulatory SNPs in Zea mays L. Using Multi-Omics Data and Machine Learning Algorithms. International Journal of Molecular Sciences, 2022, 23, 5121.	4.1	2
5	In Silico Identification of the Complex Interplay between Regulatory SNPs, Transcription Factors, and Their Related Genes in Brassica napus L. Using Multi-Omics Data. International Journal of Molecular Sciences, 2021, 22, 789.	4.1	12
6	Computational Identification of Master Regulators Influencing Trypanotolerance in Cattle. International Journal of Molecular Sciences, 2021, 22, 562.	4.1	2
7	Unravelling the Complex Interplay of Transcription Factors Orchestrating Seed Oil Content in Brassica napus L. International Journal of Molecular Sciences, 2021, 22, 1033.	4.1	9
8	A graph-based algorithm for detecting rigid domains in protein structures. BMC Bioinformatics, 2021, 22, 66.	2.6	1
9	Ultrastructural maturation of the endbulb of Held active zones comparing wild-type and otoferlin-deficient mice. IScience, 2021, 24, 102282.	4.1	5
10	Is There a Link between Suckling and Manipulation Behavior during Rearing in Pigs?. Animals, 2021, 11, 1175.	2.3	1
11	In Silico Prediction of Transcription Factor Collaborations Underlying Phenotypic Sexual Dimorphism in Zebrafish (Danio rerio). Genes, 2021, 12, 873.	2.4	0
12	agReg-SNPdb: A Database of Regulatory SNPs for Agricultural Animal Species. Biology, 2021, 10, 790.	2.8	6
13	MIDESP: Mutual Information-Based Detection of Epistatic SNP Pairs for Qualitative and Quantitative Phenotypes. Biology, 2021, 10, 921.	2.8	3
14	Detecting Animal Contacts—A Deep Learning-Based Pig Detection and Tracking Approach for the Quantification of Social Contacts. Sensors, 2021, 21, 7512.	3.8	17
15	Survey data to identify the selection criteria used by breeders of four strains of Pakistani beetal goats. Data in Brief, 2020, 32, 106051.	1.0	2
16	Genotyping by Sequencing Reads of 20 Vicia faba Lines with High and Low Vicine and Convicine Content. Data, 2020, 5, 63.	2.3	0
17	Combining Random Forests and a Signal Detection Method Leads to the Robust Detection of Genotype-Phenotype Associations. Genes, 2020, 11, 892.	2.4	12
18	Investigation of Pig Activity Based on Video Data and Semi-Supervised Neural Networks. AgriEngineering, 2020, 2, 581-595.	3.2	11

Mehmet Gültas

#	Article	IF	CITATIONS
19	Breeding objectives and selection criteria for four strains of Pakistani Beetal goats identified in a participatory approach. Small Ruminant Research, 2020, 190, 106163.	1.2	7
20	Identifying Cattle Breed-Specific Partner Choice of Transcription Factors during the African Trypanosomiasis Disease Progression Using Bioinformatics Analysis. Vaccines, 2020, 8, 246.	4.4	6
21	Identification of Regulatory SNPs Associated with Vicine and Convicine Content of Vicia faba Based on Genotyping by Sequencing Data Using Deep Learning. Genes, 2020, 11, 614.	2.4	15
22	Identification of Age-Specific and Common Key Regulatory Mechanisms Governing Eggshell Strength in Chicken Using Random Forests. Genes, 2020, 11, 464.	2.4	14
23	Constructing temporal regulatory cascades in the context of development and cell differentiation. PLoS ONE, 2020, 15, e0231326.	2.5	1
24	Genetic diversity and population structure of six ethiopian cattle breeds from different geographical regions using high density single nucleotide polymorphisms. Livestock Science, 2020, 234, 103979.	1.6	5
25	Computational identification of tissue-specific transcription factor cooperation in ten cattle tissues. PLoS ONE, 2019, 14, e0216475.	2.5	15
26	Identification of Candidate Signature Genes and Key Regulators Associated With Trypanotolerance in the Sheko Breed. Frontiers in Genetics, 2019, 10, 1095.	2.3	18
27	Construction and Visualization of Dynamic Biological Networks: Benchmarking the Neo4J Graph Database. Lecture Notes in Computer Science, 2019, , 33-43.	1.3	3
28	Big Data Technologies for DNA Sequencing. , 2019, , 330-336.		1
29	Big Data Technologies for DNA Sequencing. , 2018, , 1-6.		1
30	Removing Background Co-occurrences of Transcription Factor Binding Sites Greatly Improves the Prediction of Specific Transcription Factor Cooperations. Frontiers in Genetics, 2018, 9, 189.	2.3	8
31	The synaptic ribbon is critical for sound encoding at high rates and with temporal precision. ELife, 2018, 7, .	6.0	81
32	Computational Detection of Stage-Specific Transcription Factor Clusters during Heart Development. Frontiers in Genetics, 2016, 7, 33.	2.3	11
33	Computational Identification of Key Regulators in Two Different Colorectal Cancer Cell Lines. Frontiers in Genetics, 2016, 7, 42.	2.3	10
34	A Novel Sequence-Based Feature for the Identification of DNA-Binding Sites in Proteins Using Jensen–Shannon Divergence. Entropy, 2016, 18, 379.	2.2	5
35	PC-TraFF: identification of potentially collaborating transcription factors using pointwise mutual information. BMC Bioinformatics, 2015, 16, 400.	2.6	23
36	CRF-based models of protein surfaces improve protein-protein interaction site predictions. BMC Bioinformatics, 2014, 15, 277.	2.6	20

Mehmet Gültas

#	Article	IF	CITATIONS
37	Quantum coupled mutation finder: predicting functionally or structurally important sites in proteins using quantum Jensen-Shannon divergence and CUDA programming. BMC Bioinformatics, 2014, 15, 96.	2.6	7
38	Coupled mutation finder: A new entropy-based method quantifying phylogenetic noise for the detection of compensatory mutations. BMC Bioinformatics, 2012, 13, 225.	2.6	8
39	The sponge genetree server—providing a phylogenetic backbone for poriferan evolutionary studies. Zootaxa, 2008, 1939, 58-60.	0.5	19