
Claudia Arenaccio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8759129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exosomes from Human Immunodeficiency Virus Type 1 (HIV-1)-Infected Cells License Quiescent CD4 ⁺ T Lymphocytes To Replicate HIV-1 through a Nef- and ADAM17-Dependent Mechanism. Journal of Virology, 2014, 88, 11529-11539.	1.5	140
2	Latent HIV-1 is activated by exosomes from cells infected with either replication-competent or defective HIV-1. Retrovirology, 2015, 12, 87.	0.9	77
3	An Exosomeâ€Based Vaccine Platform Imparts Cytotoxic T Lymphocyte Immunity Against Viral Antigens. Biotechnology Journal, 2018, 13, e1700443.	1.8	77
4	Antitumor HPV E7-specific CTL activity elicited by in vivo engineered exosomes produced through DNA inoculation. International Journal of Nanomedicine, 2017, Volume 12, 4579-4591.	3.3	58
5	The Multifaceted Functions of Exosomes in Health and Disease: An Overview. Advances in Experimental Medicine and Biology, 2017, 998, 3-19.	0.8	54
6	Cell activation and HIV-1 replication in unstimulated CD4+T lymphocytes ingesting exosomes from cells expressing defective HIV-1. Retrovirology, 2014, 11, 46.	0.9	52
7	HPV-E7 Delivered by Engineered Exosomes Elicits a Protective CD8+ T Cell-Mediated Immune Response. Viruses, 2015, 7, 1079-1099.	1.5	47
8	Exosomes in Therapy: Engineering, Pharmacokinetics and Future Applications. Current Drug Targets, 2018, 20, 87-95.	1.0	34
9	Engineered exosomes emerging from muscle cells break immune tolerance to HER2 in transgenic mice and induce antigen-specific CTLs upon challenge by human dendritic cells. Journal of Molecular Medicine, 2018, 96, 211-221.	1.7	29
10	miR-146a controls CXCR4 expression in a pathway that involves PLZF and can be used to inhibit HIV-1 infection of CD4+ T lymphocytes. Virology, 2015, 478, 27-38.	1.1	26
11	Surface-bound Tat inhibits antigen-specific CD8+ T-cell activation in an integrin-dependent manner. Aids, 2014, 28, 2189-2200.	1.0	24
12	DNA Vectors Generating Engineered Exosomes Potential CTL Vaccine Candidates Against AIDS, Hepatitis B, and Tumors. Molecular Biotechnology, 2018, 60, 773-782.	1.3	24
13	Incorporation of Heterologous Proteins in Engineered Exosomes. Methods in Molecular Biology, 2016, 1448, 249-260.	0.4	18
14	<p>The Intracellular Delivery Of Anti-HPV16 E7 scFvs Through Engineered Extracellular Vesicles Inhibits The Proliferation Of HPV-Infected Cells</p> . International Journal of Nanomedicine, 2019, Volume 14, 8755-8768.	3.3	18
15	The Contribution of Extracellular Nef to HIV-Induced Pathogenesis. Current Drug Targets, 2015, 17, 46-53.	1.0	16
16	HIV-1 Nef Impairs Key Functional Activities in Human Macrophages through CD36 Downregulation. PLoS ONE, 2014, 9, e93699.	1.1	16
17	The CD8+ T Cell-Mediated Immunity Induced by HPV-E6 Uploaded in Engineered Exosomes Is Improved by ISCOMATRIXTM Adjuvant. Vaccines, 2016, 4, 42.	2.1	13
18	The ADAR1 editing enzyme is encapsidated into HIV-1 virions. Virology, 2015, 485, 475-480.	1.1	12

CLAUDIA ARENACCIO

#	Article	IF	CITATIONS
19	Trans-dissemination of exosomes from HIV-1-infected cells fosters both HIV-1 trans-infection in resting CD4+ T lymphocytes and reactivation of the HIV-1 reservoir. Archives of Virology, 2017, 162, 2565-2577.	0.9	11
20	N-Terminal Fatty Acids of NEFMUT Are Required for the CD8+ T-Cell Immunogenicity of In Vivo Engineered Extracellular Vesicles. Vaccines, 2020, 8, 243.	2.1	8
21	Extracellular vesicle-mediated intercellular communication in HIV-1 infection and its role in the reservoir maintenance. Cytokine and Growth Factor Reviews, 2020, 51, 40-48.	3.2	6
22	Tumor cells endowed with professional antigen-presenting cell functions prime PBLs to generate antitumor CTLs. Journal of Molecular Medicine, 2019, 97, 1139-1153.	1.7	4
23	Uncovering the role of defective HIV-1 in spreading viral infection. Future Virology, 2015, 10, 371-381.	0.9	1
24	HIV-1-infected cells transiently express lentiviral RNA shuttled by exosomes. Future Virology, 2014, 9, 111-121.	0.9	0
25	HIV-1 Nef Protein Affects Cytokine and Extracellular Vesicles Production in the GEN2.2 Plasmacytoid Dendritic Cell Line. Viruses, 2022, 14, 74.	1.5	0