List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8759115/publications.pdf Version: 2024-02-01

FDIC | SNIIDED

#	Article	IF	CITATIONS
1	Unique and Conserved Features of Genome and Proteome of SARS-coronavirus, an Early Split-off From the Coronavirus Group 2 Lineage. Journal of Molecular Biology, 2003, 331, 991-1004.	2.0	1,092
2	Commentary: Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group. Journal of Virology, 2013, 87, 7790-7792.	1.5	1,012
3	SARS-Coronavirus Replication Is Supported by a Reticulovesicular Network of Modified Endoplasmic Reticulum. PLoS Biology, 2008, 6, e226.	2.6	862
4	Virus-encoded proteinases and proteolytic processing in the Nidovirales. Journal of General Virology, 2000, 81, 853-879.	1.3	855
5	Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature, 2014, 505, 691-695.	13.7	773
6	Mechanisms and enzymes involved in SARS coronavirus genome expression. Journal of General Virology, 2003, 84, 2305-2315.	1.3	767
7	Genomic Characterization of a Newly Discovered Coronavirus Associated with Acute Respiratory Distress Syndrome in Humans. MBio, 2012, 3, .	1.8	766
8	Nidovirales: Evolving the largest RNA virus genome. Virus Research, 2006, 117, 17-37.	1.1	757
9	The molecular biology of arteriviruses Journal of General Virology, 1998, 79, 961-979.	1.3	722
10	Zn2+ Inhibits Coronavirus and Arterivirus RNA Polymerase Activity In Vitro and Zinc Ionophores Block the Replication of These Viruses in Cell Culture. PLoS Pathogens, 2010, 6, e1001176.	2.1	685
11	Screening of an FDA-Approved Compound Library Identifies Four Small-Molecule Inhibitors of Middle East Respiratory Syndrome Coronavirus Replication in Cell Culture. Antimicrobial Agents and Chemotherapy, 2014, 58, 4875-4884.	1.4	611
12	One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3900-9.	3.3	482
13	The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing. Advances in Virus Research, 2016, 96, 59-126.	0.9	477
14	Ultrastructure and Origin of Membrane Vesicles Associated with the Severe Acute Respiratory Syndrome Coronavirus Replication Complex. Journal of Virology, 2006, 80, 5927-5940.	1.5	465
15	SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology. Journal of General Virology, 2020, 101, 925-940.	1.3	465
16	α-Ketoamides as Broad-Spectrum Inhibitors of Coronavirus and Enterovirus Replication: Structure-Based Design, Synthesis, and Activity Assessment. Journal of Medicinal Chemistry, 2020, 63, 4562-4578.	2.9	437
17	Viral presence and immunopathology in patients with lethal COVID-19: a prospective autopsy cohort study. Lancet Microbe, The, 2020, 1, e290-e299.	3.4	422
18	Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily. Journal of Virology, 1991, 65, 2910-2920.	1.5	393

ERIC J SNIJDER

#	Article	IF	CITATIONS
19	Multiple Enzymatic Activities Associated with Severe Acute Respiratory Syndrome Coronavirus Helicase. Journal of Virology, 2004, 78, 5619-5632.	1.5	384
20	Host Factors in Coronavirus Replication. Current Topics in Microbiology and Immunology, 2017, 419, 1-42.	0.7	379
21	A molecular pore spans the double membrane of the coronavirus replication organelle. Science, 2020, 369, 1395-1398.	6.0	372
22	A unifying structural and functional model of the coronavirus replication organelle: Tracking down RNA synthesis. PLoS Biology, 2020, 18, e3000715.	2.6	368
23	Arterivirus molecular biology and pathogenesis. Journal of General Virology, 2013, 94, 2141-2163.	1.3	344
24	The PRRSV replicase: Exploring the multifunctionality of an intriguing set of nonstructural proteins. Virus Research, 2010, 154, 61-76.	1.1	330
25	In Vitro Reconstitution of SARS-Coronavirus mRNA Cap Methylation. PLoS Pathogens, 2010, 6, e1000863.	2.1	322
26	MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment. Journal of General Virology, 2013, 94, 1749-1760.	1.3	313
27	Ovarian Tumor Domain-Containing Viral Proteases Evade Ubiquitin- and ISG15-Dependent Innate Immune Responses. Cell Host and Microbe, 2007, 2, 404-416.	5.1	304
28	Nidovirus transcription: how to make sense…?. Journal of General Virology, 2006, 87, 1403-1421.	1.3	292
29	Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses. Npj Vaccines, 2020, 5, 91.	2.9	286
30	Open Reading Frame 1a-Encoded Subunits of the Arterivirus Replicase Induce Endoplasmic Reticulum-Derived Double-Membrane Vesicles Which Carry the Viral Replication Complex. Journal of Virology, 1999, 73, 2016-2026.	1.5	260
31	The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3792-3796.	3.3	254
32	Discovery of a small arterivirus gene that overlaps the GP5 coding sequence and is important for virus production. Journal of General Virology, 2011, 92, 1097-1106.	1.3	247
33	Efficient â^'2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2920-8.	3.3	231
34	SARS-Coronavirus Replication/Transcription Complexes Are Membrane-Protected and Need a Host Factor for Activity In Vitro. PLoS Pathogens, 2008, 4, e1000054.	2.1	229
35	Structures and functions of coronavirus replication–transcription complexes and their relevance for SARS-CoV-2 drug design. Nature Reviews Molecular Cell Biology, 2022, 23, 21-39.	16.1	221

Coronavirus Nonstructural Protein 16 Is a Cap-O Binding Enzyme Possessing (Nucleoside- $2\hat{a}\in 2 < i>O</i>) Tj ETQqO 0.0 rgBT /Qverlock 10 220 lock 10$

#	Article	IF	CITATIONS
37	Cyclosporin A inhibits the replication of diverse coronaviruses. Journal of General Virology, 2011, 92, 2542-2548.	1.3	215
38	Double-Membrane Vesicles as Platforms for Viral Replication. Trends in Microbiology, 2020, 28, 1022-1033.	3.5	214
39	Severe Acute Respiratory Syndrome Coronavirus Phylogeny: toward Consensus. Journal of Virology, 2004, 78, 7863-7866.	1.5	205
40	The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Research, 2012, 40, 1737-1747.	6.5	205
41	Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12056-12061.	3.3	200
42	An infectious arterivirus cDNA clone: Identification of a replicase point mutation that abolishes discontinuous mRNA transcription. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 991-996.	3.3	199
43	The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Research, 2010, 38, 203-214.	6.5	199
44	Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses. Nucleic Acids Research, 2015, 43, 8416-8434.	6.5	197
45	Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements. Nucleic Acids Research, 2020, 48, 12436-12452.	6.5	195
46	The Enzymatic Activity of the nsp14 Exoribonuclease Is Critical for Replication of MERS-CoV and SARS-CoV-2. Journal of Virology, 2020, 94, .	1.5	188
47	Mutations in the chikungunya virus non-structural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral. Journal of Antimicrobial Chemotherapy, 2014, 69, 2770-2784.	1.3	187
48	Localization of Mouse Hepatitis Virus Nonstructural Proteins and RNA Synthesis Indicates a Role for Late Endosomes in Viral Replication. Journal of Virology, 1999, 73, 7641-7657.	1.5	180
49	Coronavirus Nsp10, a Critical Co-factor for Activation of Multiple Replicative Enzymes. Journal of Biological Chemistry, 2014, 289, 25783-25796.	1.6	178
50	Expression and Cleavage of Middle East Respiratory Syndrome Coronavirus nsp3-4 Polyprotein Induce the Formation of Double-Membrane Vesicles That Mimic Those Associated with Coronaviral RNA Replication. MBio, 2017, 8, .	1.8	176
51	Discovery of the First Insect Nidovirus, a Missing Evolutionary Link in the Emergence of the Largest RNA Virus Genomes. PLoS Pathogens, 2011, 7, e1002215.	2.1	169
52	Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex. Journal of General Virology, 2001, 82, 985-994.	1.3	168
53	Proteolytic processing of the replicase ORF1a protein of equine arteritis virus. Journal of Virology, 1994, 68, 5755-5764.	1.5	160
54	ORF1a-Encoded Replicase Subunits Are Involved in the Membrane Association of the Arterivirus Replication Complex. Journal of Virology, 1998, 72, 6689-6698.	1.5	158

#	Article	IF	CITATIONS
55	Crystal Structure of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Papain-like Protease Bound to Ubiquitin Facilitates Targeted Disruption of Deubiquitinating Activity to Demonstrate Its Role in Innate Immune Suppression. Journal of Biological Chemistry, 2014, 289, 34667-34682.	1.6	155
56	Identification of a Novel Structural Protein of Arteriviruses. Journal of Virology, 1999, 73, 6335-6345.	1.5	154
57	Mechanism of Nucleic Acid Unwinding by SARS-CoV Helicase. PLoS ONE, 2012, 7, e36521.	1.1	150
58	The Transformation of Enterovirus Replication Structures: a Three-Dimensional Study of Single- and Double-Membrane Compartments. MBio, 2011, 2, .	1.8	138
59	The Arterivirus Nsp2 Protease Journal of Biological Chemistry, 1995, 270, 16671-16676.	1.6	133
60	Sequence requirements for RNA strand transfer during nidovirus discontinuous subgenomic RNA synthesis. EMBO Journal, 2001, 20, 7220-7228.	3.5	132
61	Stress Granule Components G3BP1 and G3BP2 Play a Proviral Role Early in Chikungunya Virus Replication. Journal of Virology, 2015, 89, 4457-4469.	1.5	130
62	The Curious Case of the Nidovirus Exoribonuclease: Its Role in RNA Synthesis and Replication Fidelity. Frontiers in Microbiology, 2019, 10, 1813.	1.5	130
63	The SARS-Coronavirus PLnc domain of nsp3 as a replication/transcription scaffolding protein. Virus Research, 2008, 133, 136-148.	1.1	122
64	Ultrastructural Characterization of Arterivirus Replication Structures: Reshaping the Endoplasmic Reticulum To Accommodate Viral RNA Synthesis. Journal of Virology, 2012, 86, 2474-2487.	1.5	121
65	The carboxyl-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro- and coronaviruses are evolutionary related. Nucleic Acids Research, 1990, 18, 4535-4542.	6.5	120
66	Nonstructural Protein 2 of Porcine Reproductive and Respiratory Syndrome Virus Inhibits the Antiviral Function of Interferon-Stimulated Gene 15. Journal of Virology, 2012, 86, 3839-3850.	1.5	120
67	The Footprint of Genome Architecture in the Largest Genome Expansion in RNA Viruses. PLoS Pathogens, 2013, 9, e1003500.	2.1	114
68	Transactivation of programmed ribosomal frameshifting by a viral protein. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2172-81.	3.3	113
69	Inhibition of Dengue and Chikungunya Virus Infections by RIG-I-Mediated Type I Interferon-Independent Stimulation of the Innate Antiviral Response. Journal of Virology, 2014, 88, 4180-4194.	1.5	112
70	A Complex Zinc Finger Controls the Enzymatic Activities of Nidovirus Helicases. Journal of Virology, 2005, 79, 696-704.	1.5	108
71	Arterivirus and Nairovirus Ovarian Tumor Domain-Containing Deubiquitinases Target Activated RIG-I To Control Innate Immune Signaling. Journal of Virology, 2012, 86, 773-785.	1.5	108
72	Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E838-47.	3.3	108

#	Article	IF	CITATIONS
73	Viral cysteine proteinases. Journal of Computer - Aided Molecular Design, 1996, 6, 64-86.	1.0	106
74	The Arterivirus Nsp4 Protease Is the Prototype of a Novel Group of Chymotrypsin-like Enzymes, the 3C-like Serine Proteases. Journal of Biological Chemistry, 1996, 271, 4864-4871.	1.6	105
75	Proteolytic Processing of the Open Reading Frame 1b-Encoded Part of Arterivirus Replicase Is Mediated by nsp4 Serine Protease and Is Essential for Virus Replication. Journal of Virology, 1999, 73, 2027-2037.	1.5	104
76	The Ubiquitin-Proteasome System Plays an Important Role during Various Stages of the Coronavirus Infection Cycle. Journal of Virology, 2010, 84, 7869-7879.	1.5	101
77	The 5' end of the equine arteritis virus replicase gene encodes a papainlike cysteine protease. Journal of Virology, 1992, 66, 7040-7048.	1.5	100
78	The Predicted Metal-Binding Region of the Arterivirus Helicase Protein Is Involved in Subgenomic mRNA Synthesis, Genome Replication, and Virion Biogenesis. Journal of Virology, 2000, 74, 5213-5223.	1.5	99
79	The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling. Journal of General Virology, 2014, 95, 874-882.	1.3	99
80	Mesoniviridae: a proposed new family in the order Nidovirales formed by a single species of mosquito-borne viruses. Archives of Virology, 2012, 157, 1623-1628.	0.9	98
81	Toroviruses: replication, evolution and comparison with other members of the coronavirus-like superfamily. Journal of General Virology, 1993, 74, 2305-2316.	1.3	97
82	Nidovirus RNA polymerases: Complex enzymes handling exceptional RNA genomes. Virus Research, 2017, 234, 58-73.	1.1	96
83	Genomic monitoring of SARS-CoV-2 uncovers an Nsp1 deletion variant that modulates type I interferon response. Cell Host and Microbe, 2021, 29, 489-502.e8.	5.1	95
84	The arterivirus replicase is the only viral protein required for genome replication and subgenomic mRNA transcription. Journal of General Virology, 2000, 81, 2491-2496.	1.3	94
85	Biochemical Characterization of Arterivirus Nonstructural Protein 11 Reveals the Nidovirus-Wide Conservation of a Replicative Endoribonuclease. Journal of Virology, 2009, 83, 5671-5682.	1.5	93
86	Proteolytic maturation of replicase polyprotein pp1a by the nsp4 main proteinase is essential for equine arteritis virus replication and includes internal cleavage of nsp7. Journal of General Virology, 2006, 87, 3473-3482.	1.3	89
87	Suramin inhibits chikungunya virus replication through multiple mechanisms. Antiviral Research, 2015, 121, 39-46.	1.9	89
88	The ADP-ribose-1″-monophosphatase domains of severe acute respiratory syndrome coronavirus and human coronavirus 229E mediate resistance to antiviral interferon responses. Journal of General Virology, 2011, 92, 1899-1905.	1.3	88
89	The viral capping enzyme nsP1: a novel target for the inhibition of chikungunya virus infection. Scientific Reports, 2016, 6, 31819.	1.6	88
90	Suramin Inhibits SARS-CoV-2 Infection in Cell Culture by Interfering with Early Steps of the Replication Cycle. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	87

#	Article	IF	CITATIONS
91	Comparison of the genome organization of toro- and coronaviruses: Evidence for two nonhomologous RNA recombination events during berne virus evolution. Virology, 1991, 180, 448-452.	1.1	84
92	Structural Protein Requirements in Equine Arteritis Virus Assembly. Journal of Virology, 2004, 78, 13019-13027.	1.5	82
93	The nsp1α and nsp1β papain-like autoproteinases are essential for porcine reproductive and respiratory syndrome virus RNA synthesis. Journal of General Virology, 2008, 89, 494-499.	1.3	82
94	Heterodimerization of the Two Major Envelope Proteins Is Essential for Arterivirus Infectivity. Journal of Virology, 2003, 77, 97-104.	1.5	79
95	Reverse Genetics of SARS-Related Coronavirus Using Vaccinia Virus-Based Recombination. PLoS ONE, 2012, 7, e32857.	1.1	79
96	The Role of a 21-kDa Viral Membrane Protein in the Assembly of Vaccinia Virus from the Intermediate Compartment. Journal of Biological Chemistry, 1996, 271, 14950-14958.	1.6	78
97	Biochemical Characterization of the Equine Arteritis Virus Helicase Suggests a Close Functional Relationship between Arterivirus and Coronavirus Helicases. Journal of Virology, 2000, 74, 9586-9593.	1.5	78
98	Arterivirus Minor Envelope Proteins Are a Major Determinant of Viral Tropism in Cell Culture. Journal of Virology, 2012, 86, 3701-3712.	1.5	78
99	Site-Directed Mutagenesis of the Nidovirus Replicative Endoribonuclease NendoU Exerts Pleiotropic Effects on the Arterivirus Life Cycle. Journal of Virology, 2006, 80, 1653-1661.	1.5	77
100	Genomic characterization of equine coronavirus. Virology, 2007, 369, 92-104.	1.1	77
101	Suramin inhibits Zika virus replication by interfering with virus attachment and release of infectious particles. Antiviral Research, 2017, 143, 230-236.	1.9	77
102	Identification of porcine reproductive and respiratory syndrome virus ORF1a-encoded non-structural proteins in virus-infected cells. Journal of General Virology, 2012, 93, 829-839.	1.3	74
103	Structure of Arterivirus nsp4. Journal of Biological Chemistry, 2002, 277, 39960-39966.	1.6	71
104	Nuclear localization of non-structural protein 1 and nucleocapsid protein of equine arteritis virus. Journal of General Virology, 2002, 83, 795-800.	1.3	71
105	Characterization of Synthetic Chikungunya Viruses Based on the Consensus Sequence of Recent E1-226V Isolates. PLoS ONE, 2013, 8, e71047.	1.1	70
106	Design, synthesis and evaluation of a series of acyclic fleximer nucleoside analogues with anti-coronavirus activity. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2923-2926.	1.0	70
107	Mind the gap: Micro-expansion joints drastically decrease the bending of FIB-milled cryo-lamellae. Journal of Structural Biology, 2019, 208, 107389.	1.3	70
108	Characterization of Vaccinia Virus Intracellular Cores: Implications for Viral Uncoating and Core Structure. Journal of Virology, 2000, 74, 3525-3536.	1.5	68

#	Article	IF	CITATIONS
109	A Kinome-Wide Small Interfering RNA Screen Identifies Proviral and Antiviral Host Factors in Severe Acute Respiratory Syndrome Coronavirus Replication, Including Double-Stranded RNA-Activated Protein Kinase and Early Secretory Pathway Proteins. Journal of Virology, 2015, 89, 8318-8333.	1.5	68
110	Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model. Virus Research, 2017, 228, 7-13.	1.1	68
111	Formation of the Arterivirus Replication/Transcription Complex: a Key Role for Nonstructural Protein 3 in the Remodeling of Intracellular Membranes. Journal of Virology, 2008, 82, 4480-4491.	1.5	67
112	Biogenesis and architecture of arterivirus replication organelles. Virus Research, 2016, 220, 70-90.	1.1	65
113	Characterization of an Equine Arteritis Virus Replicase Mutant Defective in Subgenomic mRNA Synthesis. Journal of Virology, 1999, 73, 5274-5281.	1.5	65
114	Cyclophilins and cyclophilin inhibitors in nidovirus replication. Virology, 2018, 522, 46-55.	1.1	64
115	ICTV Virus Taxonomy Profile: Arteriviridae 2021. Journal of General Virology, 2021, 102, .	1.3	64
116	A zinc finger-containing papain-like protease couples subgenomic mRNA synthesis to genome translation in a positive-stranded RNA virus. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1889-94.	3.3	63
117	A 3'-coterminal nested set of independently transcribed mRNAs is generated during Berne virus replication. Journal of Virology, 1990, 64, 331-338.	1.5	63
118	Secondary structure and function of the 5'-proximal region of the equine arteritis virus RNA genome. Rna, 2004, 10, 424-437.	1.6	60
119	Discontinuous Subgenomic RNA Synthesis in Arteriviruses Is Guided by an RNA Hairpin Structure Located in the Genomic Leader Region. Journal of Virology, 2005, 79, 6312-6324.	1.5	60
120	De Novo Initiation of RNA Synthesis by the Arterivirus RNA-Dependent RNA Polymerase. Journal of Virology, 2007, 81, 8384-8395.	1.5	60
121	Another triple-spanning envelope protein among intracellularly budding RNA viruses: The torovirus E protein. Virology, 1991, 182, 655-663.	1.1	58
122	Construction of Chimeric Arteriviruses Reveals That the Ectodomain of the Major Glycoprotein Is Not the Main Determinant of Equine Arteritis Virus Tropism in Cell Culture. Virology, 2001, 288, 283-294.	1.1	57
123	Arterivirus Nsp1 Modulates the Accumulation of Minus-Strand Templates to Control the Relative Abundance of Viral mRNAs. PLoS Pathogens, 2010, 6, e1000772.	2.1	57
124	Proteolytic processing of the porcine reproductive and respiratory syndrome virus replicase. Virus Research, 2015, 202, 48-59.	1.1	55
125	Immunogenicity and efficacy of one and two doses of Ad26.COV2.S COVID vaccine in adult and aged NHP. Journal of Experimental Medicine, 2021, 218, .	4.2	55
126	Equine Arteritis Virus Derived from an Infectious cDNA Clone Is Attenuated and Genetically Stable in Infected Stallions. Virology, 1999, 260, 201-208.	1.1	52

#	Article	IF	CITATIONS
127	What we know but do not understand about nidovirus helicases. Virus Research, 2015, 202, 12-32.	1.1	52
128	Integrity of the Early Secretory Pathway Promotes, but Is Not Required for, Severe Acute Respiratory Syndrome Coronavirus RNA Synthesis and Virus-Induced Remodeling of Endoplasmic Reticulum Membranes. Journal of Virology, 2010, 84, 833-846.	1.5	51
129	Origins of Enterovirus Replication Organelles Established by Whole-Cell Electron Microscopy. MBio, 2019, 10, .	1.8	51
130	The Stability of the Duplex between Sense and Antisense Transcription-Regulating Sequences Is a Crucial Factor in Arterivirus Subgenomic mRNA Synthesis. Journal of Virology, 2003, 77, 1175-1183.	1.5	49
131	Papain-Like Protease 1 from Transmissible Gastroenteritis Virus: Crystal Structure and Enzymatic Activity toward Viral and Cellular Substrates. Journal of Virology, 2010, 84, 10063-10073.	1.5	49
132	Genetic characterization of equine arteritis virus during persistent infection of stallions. Journal of General Virology, 2004, 85, 379-390.	1.3	48
133	Structural basis for the regulatory function of a complex zinc-binding domain in a replicative arterivirus helicase resembling a nonsense-mediated mRNA decay helicase. Nucleic Acids Research, 2014, 42, 3464-3477.	6.5	47
134	Genetic Manipulation of Arterivirus Alternative mRNA Leader-Body Junction Sites Reveals Tight Regulation of Structural Protein Expression. Journal of Virology, 2000, 74, 11642-11653.	1.5	46
135	Arterivirus Subgenomic mRNA Synthesis and Virion Biogenesis Depend on the Multifunctional nsp1 Autoprotease. Journal of Virology, 2007, 81, 10496-10505.	1.5	46
136	Primary structure and post-translational processing of the berne virus peplomer protein. Virology, 1990, 178, 355-363.	1.1	45
137	The in Vitro RNA Synthesizing Activity of the Isolated Arterivirus Replication/Transcription Complex Is Dependent on a Host Factor. Journal of Biological Chemistry, 2008, 283, 16525-16536.	1.6	45
138	Design, Synthesis, and Anti-RNA Virus Activity of 6′-Fluorinated-Aristeromycin Analogues. Journal of Medicinal Chemistry, 2019, 62, 6346-6362.	2.9	45
139	Development and characterization of an infectious cDNA clone of the virulent Bucyrus strain of Equine arteritis virus. Journal of General Virology, 2007, 88, 918-924.	1.3	44
140	A novel role for poly(C) binding proteins in programmed ribosomal frameshifting. Nucleic Acids Research, 2016, 44, 5491-5503.	6.5	44
141	Escaping Host Factor PI4KB Inhibition: Enterovirus Genomic RNA Replication in the Absence of Replication Organelles. Cell Reports, 2017, 21, 587-599.	2.9	41
142	Coronavirus Structural Proteins and Virus Assembly. , 0, , 179-200.		40
143	Antiviral activity of morpholino oligomers designed to block various aspects of Equine arteritis virus amplification in cell culture. Journal of General Virology, 2005, 86, 3081-3090.	1.3	39
144	Identification and Primary Structure of the Gene Encoding the Berne Virus Nucleocapsid Protein. Journal of General Virology, 1989, 70, 3363-3370.	1.3	38

#	Article	IF	CITATIONS
145	Ad26.COV2.S protects Syrian hamsters against G614 spike variant SARS-CoV-2 and does not enhance respiratory disease. Npj Vaccines, 2021, 6, 39.	2.9	38
146	Cyclophilin Inhibitors Block Arterivirus Replication by Interfering with Viral RNA Synthesis. Journal of Virology, 2013, 87, 1454-1464.	1.5	37
147	Characterization of Berne Virus Genomic and Messenger RNAs. Journal of General Virology, 1988, 69, 2135-2144.	1.3	36
148	Isolation and Characterization of an Arterivirus Defective Interfering RNA Genome. Journal of Virology, 2000, 74, 3156-3165.	1.5	36
149	Equine arteritis virus non-structural protein 1, an essential factor for viral subgenomic mRNA synthesis, interacts with the cellular transcription co-factor p100. Journal of General Virology, 2003, 84, 2317-2322.	1.3	36
150	The non-structural protein Nsp10 of mouse hepatitis virus binds zinc ions and nucleic acids. FEBS Letters, 2006, 580, 4143-4149.	1.3	36
151	Crystal structures of the Xâ€domains of a Groupâ€1 and a Groupâ€3 coronavirus reveal that ADPâ€riboseâ€binding may not be a conserved property. Protein Science, 2009, 18, 6-16.	3.1	36
152	Characterization of the neutralization determinants of equine arteritis virus using recombinant chimeric viruses and site-specific mutagenesis of an infectious cDNA clone. Virology, 2004, 321, 235-246.	1.1	35
153	Structural genomics of the SARS coronavirus: cloning, expression, crystallization and preliminary crystallographic study of the Nsp9 protein. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1628-1631.	2.5	34
154	Viral OTU Deubiquitinases: A Structural and Functional Comparison. PLoS Pathogens, 2014, 10, e1003894.	2.1	33
155	Regulation of Relative Abundance of Arterivirus Subgenomic mRNAs. Journal of Virology, 2004, 78, 8102-8113.	1.5	31
156	Coronavirus discovery by metagenomic sequencing: a tool for pandemic preparedness. Journal of Clinical Virology, 2020, 131, 104594.	1.6	31
157	Equine Arteritis Virus Subgenomic RNA Transcription: UV Inactivation and Translation Inhibition Studies. Virology, 1995, 213, 364-372.	1.1	29
158	The Coronaviruslike Superfamily. Advances in Experimental Medicine and Biology, 1994, 342, 235-244.	0.8	29
159	Characterization of a Torovirus Main Proteinase. Journal of Virology, 2006, 80, 4157-4167.	1.5	28
160	Characterization of defective interfering RNAs of Berne virus. Journal of General Virology, 1991, 72, 1635-1643.	1.3	27
161	Efficient Homologous RNA Recombination and Requirement for an Open Reading Frame during Replication of Equine Arteritis Virus Defective Interfering RNAs. Journal of Virology, 2000, 74, 9062-9070.	1.5	27
162	The VIZIER project: Preparedness against pathogenic RNA viruses. Antiviral Research, 2008, 78, 37-46.	1.9	26

#	Article	IF	CITATIONS
163	An in vitro assay to study chikungunya virus RNA synthesis and the mode of action of inhibitors. Journal of General Virology, 2014, 95, 2683-2692.	1.3	26
164	Nonstructural proteins nsp2TF and nsp2N of porcine reproductive and respiratory syndrome virus (PRRSV) play important roles in suppressing host innate immune responses. Virology, 2018, 517, 164-176.	1.1	26
165	Structure–function analysis of the nsp14 N7–guanine methyltransferase reveals an essential role in <i>Betacoronavirus</i> replication. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
166	Suramin Inhibits Chikungunya Virus Replication by Interacting with Virions and Blocking the Early Steps of Infection. Viruses, 2020, 12, 314.	1.5	25
167	Transcriptional and Translational Landscape of Equine Torovirus. Journal of Virology, 2018, 92, .	1.5	24
168	Potent Inhibition of SARS-CoV-2 nsp14 <i>N</i> 7-Methyltransferase by Sulfonamide-Based Bisubstrate Analogues. Journal of Medicinal Chemistry, 2022, 65, 6231-6249.	2.9	24
169	Mutagenesis Analysis of the nsp4 Main Proteinase Reveals Determinants of Arterivirus Replicase Polyprotein Autoprocessing. Journal of Virology, 2006, 80, 3428-3437.	1.5	23
170	New Structure Model for the Packaging Signal in the Genome of Group IIa Coronaviruses. Journal of Virology, 2007, 81, 6771-6774.	1.5	23
171	An infectious recombinant equine arteritis virus expressing green fluorescent protein from its replicase gene. Journal of General Virology, 2007, 88, 1196-1205.	1.3	23
172	Structure of the C-terminal domain of nsp4 from feline coronavirus. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 839-846.	2.5	23
173	Antiviral Innate Immune Response Interferes with the Formation of Replication-Associated Membrane Structures Induced by a Positive-Strand RNA Virus. MBio, 2016, 7, .	1.8	23
174	6′-β-Fluoro-Homoaristeromycin and 6′-Fluoro-Homoneplanocin A Are Potent Inhibitors of Chikungunya Virus Replication through Their Direct Effect on Viral Nonstructural Protein 1. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	23
175	Identification and Characterization of a Ribose 2′- <i>O</i> -Methyltransferase Encoded by the Ronivirus Branch of Nidovirales. Journal of Virology, 2016, 90, 6675-6685.	1.5	22
176	An RNA Pseudoknot in the 3′ End of the Arterivirus Genome Has a Critical Role in Regulating Viral RNA Synthesis. Journal of Virology, 2007, 81, 9426-9436.	1.5	21
177	The Coronaviruslike Superfamily. , 1995, , 239-255.		20
178	Rescue of disabled infectious single-cycle (DISC) Equine arteritis virus by using complementing cell lines that express minor structural glycoproteins. Journal of General Virology, 2004, 85, 3709-3714.	1.3	20
179	Coronaviruses and arteriviruses display striking differences in their cyclophilin A-dependence during replication in cell culture. Virology, 2018, 517, 148-156.	1.1	19

180 The Molecular Biology of Toroviruses. , 1995, , 219-238.

#	Article	IF	CITATIONS
181	RNA signals in the 3′ terminus of the genome of Equine arteritis virus are required for viral RNA synthesis. Journal of General Virology, 2006, 87, 1977-1983.	1.3	18
182	Development and RNA-Synthesizing Activity of Coronavirus Replication Structures in the Absence of Protein Synthesis. Journal of Virology, 2011, 85, 5669-5673.	1.5	17
183	Antiviral activity of K22 against members of the order Nidovirales. Virus Research, 2018, 246, 28-34.	1.1	17
184	Myristoylation of the arterivirus E protein: the fatty acid modification is not essential for membrane association but contributes significantly to virus infectivity. Journal of General Virology, 2009, 90, 2704-2712.	1.3	16
185	Structure of the X (ADRP) domain of nsp3 from feline coronavirus. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 1292-1300.	2.5	16
186	Temporal SILACâ€based quantitative proteomics identifies host factors involved in chikungunya virus replication. Proteomics, 2015, 15, 2267-2280.	1.3	16
187	A Replication-Competent Chimera of Plant and Animal Viruses. Virology, 2002, 294, 75-84.	1.1	15
188	Characterization of Equine Humoral Antibody Response to the Nonstructural Proteins of Equine Arteritis Virus. Vaccine Journal, 2011, 18, 268-279.	3.2	15
189	The Arterivirus Replicase. Advances in Experimental Medicine and Biology, 1998, , 97-109.	0.8	15
190	The Polymerase Gene of Corona- and Toroviruses: Evidence for an Evolutionary Relationship. Advances in Experimental Medicine and Biology, 1990, 276, 307-316.	0.8	15
191	Expression, purification, and in vitro activity of an arterivirus main proteinase. Virus Research, 2006, 120, 97-106.	1.1	14
192	Pathogenesis of Human Coronaviruses Other than Severe Acute Respiratory Syndrome Coronavirus. , 0, , 313-324.		14
193	A swine arterivirus deubiquitinase stabilizes two major envelope proteins and promotes production of viral progeny. PLoS Pathogens, 2021, 17, e1009403.	2.1	14
194	Arterivirus nsp12 versus the coronavirus nsp16 2′-O-methyltransferase: comparison of the C-terminal cleavage products of two nidovirus pp1ab polyproteins. Journal of General Virology, 2015, 96, 2643-2655.	1.3	14
195	Structure and Genetic Analysis of the Arterivirus Nonstructural Protein 7α. Journal of Virology, 2011, 85, 7449-7453.	1.5	12
196	Development and Characterization of an Infectious cDNA Clone of the Modified Live Virus Vaccine Strain of Equine Arteritis Virus. Vaccine Journal, 2012, 19, 1312-1321.	3.2	12
197	Mass spectrometry-based comparative sequencing to detect ganciclovir resistance in the UL97 gene of human cytomegalovirus. Journal of Clinical Virology, 2011, 51, 25-30.	1.6	11
198	Coronavirus Accessory Proteins. , 2014, , 235-244.		10

Coronavirus Accessory Proteins. , 2014, , 235-244. 198

#	Article	IF	CITATIONS
199	Coronavirus Replicative Proteins. , 2014, , 65-81.		10
200	Coronaviruses of Domestic Livestock and Poultry: Interspecies Transmission, Pathogenesis, and Immunity. , 0, , 279-298.		10
201	In vivo assessment of equine arteritis virus vaccine improvement by disabling the deubiquitinase activity of papain-like protease 2. Veterinary Microbiology, 2015, 178, 132-137.	0.8	10
202	Arterivirus RNA-dependent RNA polymerase: Vital enzymatic activity remains elusive. Virology, 2016, 487, 68-74.	1.1	10
203	Molecular characterization of the RNA-protein complex directing â^'2/â^'1 programmed ribosomal frameshifting during arterivirus replicase expression. Journal of Biological Chemistry, 2020, 295, 17904-17921.	1.6	10
204	Structural Insights into the Mechanisms of Action of Functionally Distinct Classes of Chikungunya Virus Nonstructural Protein 1 Inhibitors. Antimicrobial Agents and Chemotherapy, 2021, 65, e0256620.	1.4	9
205	Proteolytic Processing of the N-terminal Region of the Equine Arteritis Virus Replicase. Advances in Experimental Medicine and Biology, 1994, 342, 227-232.	0.8	9
206	An Introduction to Nidoviruses. , 0, , 1-13.		9
207	Phage display of the Equine arteritis virus nsp1 ZF domain and examination of its metal interactions. Journal of Virological Methods, 2004, 119, 159-169.	1.0	8
208	Genomics and Evolution of the Nidovirales. , 0, , 15-28.		8
209	The Predicted Metal-Binding Region of the Arterivirus Helicase Protein Is Involved in Subgenomic mRNA Synthesis, Genome Replication, and Virion Biogenesis. Journal of Virology, 2000, 74, 5213-5223.	1.5	7
210	Nidovirus Entry into Cells. , 2014, , 157-178.		6
211	Arterivirus RNA Synthesis Dissected. Advances in Experimental Medicine and Biology, 2001, , 241-253.	0.8	6
212	Adaptive Mutations in Replicase Transmembrane Subunits Can Counteract Inhibition of Equine Arteritis Virus RNA Synthesis by Cyclophilin Inhibitors. Journal of Virology, 2019, 93, .	1.5	5
213	Proteolytic Processing of the Arterivirus Replicase. Advances in Experimental Medicine and Biology, 1995, 380, 443-451.	0.8	5
214	Nidovirus Genome Organization and Expression Mechanisms. , 0, , 29-46.		5
215	Efficacy Assessment of Newly-designed Filtering Facemasks during the SARS-CoV-2 Pandemic. Aerosol and Air Quality Research, 2021, 21, 200424.	0.9	4
216	Molecular Biology and Pathogenesis of Roniviruses. , 0, , 361-377.		4

#	Article	IF	CITATIONS
217	The Arterivirus Replicase. , 0, , 83-101.		4
218	Synthesis, Structure–Activity Relationships, and Antiviral Profiling of 1-Heteroaryl-2-Alkoxyphenyl Analogs as Inhibitors of SARS-CoV-2 Replication. Molecules, 2022, 27, 1052.	1.7	4
219	The Cyclophilin-Dependent Calcineurin Inhibitor Voclosporin Inhibits SARS-CoV-2 Replication in Cell Culture. Transplant International, 0, 35, .	0.8	4
220	The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Research, 2011, 39, 9458-9458.	6.5	3
221	Organ tropism of murine coronavirus does not correlate with the expression levels of the membrane-anchored or secreted isoforms of the carcinoembryonic antigen-related cell adhesion molecule 1 receptor. Journal of General Virology, 2012, 93, 1918-1923.	1.3	3
222	Arterivirus Structural Proteins and Assembly. , 0, , 211-234.		3
223	Torovirus Pathogenesis and Immune Responses. , 0, , 351-359.		3
224	Vaccines for Severe Acute Respiratory Syndrome Virus and Other Coronaviruses. , 0, , 379-407.		3
225	Molecular Biology and Evolution of Toroviruses. , 0, , 133-146.		3
226	Immunometabolism pathways as the basis for innovative anti-viral strategies (INITIATE): A Marie Sklodowska-Curie innovative training network. Virus Research, 2020, 287, 198094.	1.1	2
227	Characterization of an Arterivirus Defective Interfering RNA. Advances in Experimental Medicine and Biology, 2001, 494, 519-525.	0.8	2
228	Host Cell Responses to Coronavirus Infections. , 0, , 245-258.		2
229	Pathogenesis of Murine Coronavirus Infection. , 0, , 259-278.		2
230	A Yellow Fever 17D Virus Replicon-Based Vaccine Platform for Emerging Coronaviruses. Vaccines, 2021, 9, 1492.	2.1	2
231	Angiotensin-Converting Enzyme 2, the Cellular Receptor for Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus NL63. , 0, , 147-156.		1
232	Single-Round Infectious Particle Production by DNA-Launched Infectious Clones of Bungowannah Pestivirus. Viruses, 2020, 12, 847.	1.5	1
233	Arterivirus Papain-like Proteinase 1α. , 2013, , 2199-2204.		1
234	Arterivirus Papain-like Proteinase 1β. , 2013, , 2205-2210.		1

0

#	Article	IF	CITATIONS
235	Arterivirus nsp2 Cysteine Proteinase. , 2013, , 2210-2215.		1
236	Structure of the C-terminal domain of NSP4 from feline infection peritonitis virus. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s167-s167.	0.3	1
237	Crystal structure of the TGEV papain-like protease 1 (PLpro1). Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s167-s167.	0.3	1
238	Arterivirus Pathogenesis and Immune Response. , 0, , 325-337.		1
239	Cell Biology of Nidovirus Replication Complexes. , 0, , 103-113.		1
240	Enveloped, Positive-Strand RNA Viruses (Nidovirales). , 2008, , 256-266.		1
241	Emerging Nidovirus Infections. , 0, , 409-418.		1
242	Genetics and Reverse Genetics of Nidoviruses. , 0, , 47-64.		1
243	RNA Signals Regulating Nidovirus RNA Synthesis. , 0, , 115-131.		1
244	Title is missing!. , 2020, 18, e3000715.		1
245	193. Cytokine, 2013, 63, 288.	1.4	0
246	Supramolecular Architecture of the Coronavirus Particle. , 2014, , 201-210.		0
247	Introduction to Virology special issue featuring nidovirus research. Virology, 2018, 517, 1-2.	1.1	0
248	Production of Monospecific Rabbit Antisera Recognizing Nidovirus Proteins. Methods in Molecular Biology, 2008, 454, 205-226.	0.4	0
249	Torovirusâ€j. , 2011, , 419-423.		0
250	Arterivirus Serine Endopeptidase. , 2013, , 3137-3141.		0
251	The Immune Response to Coronaviruses. , 0, , 339-349.		0

252 Severe Acute Respiratory Syndrome: Epidemiology, Pathogenesis, and Animal Models. , 0, , 299-311.

#	Article	IF	CITATIONS
253	Title is missing!. , 2020, 18, e3000715.		0
254	Title is missing!. , 2020, 18, e3000715.		0
255	Title is missing!. , 2020, 18, e3000715.		0