Andrea Visentin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/875911/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact. Blood, 2019, 133, 1205-1216.	1.4	164
2	Direct Pharmacological Targeting of a Mitochondrial Ion Channel Selectively Kills Tumor Cells InÂVivo. Cancer Cell, 2017, 31, 516-531.e10.	16.8	138
3	Higher-order connections between stereotyped subsets: implications for improved patient classification in CLL. Blood, 2021, 137, 1365-1376.	1.4	72
4	Response to the conjugate pneumococcal vaccine (PCV13) in patients with chronic lymphocytic leukemia (CLL). Leukemia, 2021, 35, 737-746.	7.2	61
5	COVID-19 severity and mortality in patients with CLL: an update of the international ERIC and Campus CLL study. Leukemia, 2021, 35, 3444-3454.	7.2	57
6	Clinical profile associated with infections in patients with chronic lymphocytic leukemia. Protective role of immunoglobulin replacement therapy. Haematologica, 2015, 100, e515-e518.	3.5	48
7	Peripheral nervous system involvement in lymphomas. Journal of the Peripheral Nervous System, 2019, 24, 5-18.	3.1	44
8	Cross-talk between chronic lymphocytic leukemia (CLL) tumor B cells and mesenchymal stromal cells (MSCs): implications for neoplastic cell survival. Oncotarget, 2015, 6, 42130-42149.	1.8	39
9	In Chronic Lymphocytic Leukemia the JAK2/STAT3 Pathway Is Constitutively Activated and Its Inhibition Leads to CLL Cell Death Unaffected by the Protective Bone Marrow Microenvironment. Cancers, 2019, 11, 1939.	3.7	39
10	The Bruton tyrosine kinase inhibitor ibrutinib improves anti-MAG antibody polyneuropathy. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	36
11	In chronic lymphocytic leukaemia with complex karyotype, major structural abnormalities identify a subset of patients with inferior outcome and distinct biological characteristics. British Journal of Haematology, 2018, 181, 229-233.	2.5	34
12	HSP70/HSF1 axis, regulated <i>via</i> a PI3K/AKT pathway, is a druggable target in chronic lymphocytic leukemia. International Journal of Cancer, 2019, 145, 3089-3100.	5.1	32
13	Alternate use of thrombopoietin receptor agonists in adult primary immune thrombocytopenia patients: A retrospective collaborative survey from Italian hematology centers. American Journal of Hematology, 2018, 93, 58-64.	4.1	31
14	The combination of complex karyotype subtypes and IGHV mutational status identifies new prognostic and predictive groups in chronic lymphocytic leukaemia. British Journal of Cancer, 2019, 121, 150-156.	6.4	31
15	The complex karyotype landscape in chronic lymphocytic leukemia allows the refinement of the risk of Richter syndrome transformation. Haematologica, 2022, 107, 868-876.	3.5	31
16	Preexisting and treatment-emergent autoimmune cytopenias in patients with CLL treated with targeted drugs. Blood, 2021, 137, 3507-3517.	1.4	30
17	Aberrant expression of <scp>CD</scp> 10 and <scp>BCL</scp> 6 in mantle cell lymphoma. Histopathology, 2017, 71, 769-777.	2.9	29
18	Major infections, secondary cancers and autoimmune diseases occur in different clinical subsets of chronic lymphocytic leukaemia patients. European Journal of Cancer, 2017, 72, 103-111.	2.8	29

#	Article	IF	CITATIONS
19	Leukaemic cells from chronic lymphocytic leukaemia patients undergo apoptosis following microtubule depolymerization and <scp>L</scp> yn inhibition by nocodazole. British Journal of Haematology, 2014, 165, 659-672.	2.5	26
20	Integrated CLL Scoring System, a New and Simple Index to Predict Time to Treatment and Overall Survival in Patients With Chronic Lymphocytic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, 612-620.e5.	0.4	26
21	Bendamustine plus rituximab versus R-CHOP as first-line treatment for patients with indolent non-Hodgkin's lymphoma: evidence from a multicenter, retrospective study. Annals of Hematology, 2016, 95, 1107-1114.	1.8	25
22	Cortactin, a Lyn substrate, is a checkpoint molecule at the intersection of BCR and CXCR4 signalling pathway in chronic lymphocytic leukaemia cells. British Journal of Haematology, 2017, 178, 81-93.	2.5	25
23	Prognostic and Predictive Effect of IGHV Mutational Status and Load in Chronic Lymphocytic Leukemia: Focus on FCR and BR Treatments. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, 678-685.e4.	0.4	25
24	Mitochondrial apoptosis is induced by Alkoxy phenyl-1-propanone derivatives through PP2A-mediated dephosphorylation of Bad and Foxo3A in CLL. Leukemia, 2019, 33, 1148-1160.	7.2	25
25	BCR kinase inhibitors, idelalisib and ibrutinib, are active and effective in Richter syndrome. British Journal of Haematology, 2019, 185, 193-197.	2.5	24
26	Targeted activation of the SHP-1/PP2A signaling axis elicits apoptosis of chronic lymphocytic leukemia cells. Haematologica, 2017, 102, 1401-1412.	3.5	23
27	p66Shc deficiency enhances CXCR4 and CCR7 recycling in CLL B cells by facilitating their dephosphorylation-dependent release from β-arrestin at early endosomes. Oncogene, 2018, 37, 1534-1550.	5.9	23
28	Bendamustine plus rituximab is an effective first-line treatment in hairy cell leukemia variant: a report of three cases. Oncotarget, 2017, 8, 110727-110731.	1.8	23
29	Epidemiology and risk factors of invasive fungal infections in a large cohort of patients with chronic lymphocytic leukemia. Hematological Oncology, 2017, 35, 925-928.	1.7	19
30	The small GTPase RhoU lays downstream of JAK/STAT signaling and mediates cell migration in multiple myeloma. Blood Cancer Journal, 2018, 8, 20.	6.2	19
31	Genetic landscape of ultra-stable chronic lymphocytic leukemia patients. Annals of Oncology, 2018, 29, 966-972.	1.2	19
32	<p>Lights and Shade of Next-Generation Pi3k Inhibitors in Chronic Lymphocytic Leukemia</p> . OncoTargets and Therapy, 2020, Volume 13, 9679-9688.	2.0	19
33	Peripheral neuropathies in chronic lymphocytic leukemia: a single center experience on 816 patients. Haematologica, 2017, 102, e140-e143.	3.5	17
34	p66Shc deficiency in the Eμ-TCL1 mouse model of chronic lymphocytic leukemia enhances leukemogenesis by altering the chemokine receptor landscape. Haematologica, 2019, 104, 2040-2052.	3.5	17
35	Monoclonal gammopathy and serum immunoglobulin levels as prognostic factors in chronic lymphocytic leukaemia. British Journal of Haematology, 2020, 190, 901-908.	2.5	17
36	Elevated Lactate Dehydrogenase Has Prognostic Relevance in Treatment-NaÃ ⁻ ve Patients Affected by Chronic Lymphocytic Leukemia with Trisomy 12. Cancers, 2019, 11, 896.	3.7	16

#	Article	IF	CITATIONS
37	Ibrutinib in relapsed hairy cell leukemia variant: A case report and review of the literature. Hematological Oncology, 2020, 38, 823-826.	1.7	16
38	Prognostic Impact and Risk Factors of Infections in Patients with Chronic Lymphocytic Leukemia Treated with Ibrutinib. Cancers, 2021, 13, 3240.	3.7	16
39	Primary neurolymphomatosis as clinical onset of chronic lymphocytic leukemia. Annals of Hematology, 2017, 96, 159-161.	1.8	15
40	Obinutuzumab, a new anti D20 antibody, and chlorambucil are active and effective in antiâ€myelinâ€associated glycoprotein antibody polyneuropathy. European Journal of Neurology, 2019, 26, 371-375.	3.3	15
41	Profiling B cell chronic lymphocytic leukemia by reverse phase protein array: Focus on apoptotic proteins. Journal of Leukocyte Biology, 2016, 100, 1061-1070.	3.3	14
42	Continuous treatment with Ibrutinib in 100 untreated patients with <i>TP</i> 53 disrupted chronic lymphocytic leukemia: A realâ€life campus CLL study. American Journal of Hematology, 2022, 97, .	4.1	14
43	Role of <i>miR-15a/miR-16-1</i> and the <i>TP53</i> axis in regulating telomerase expression in chronic lymphocytic leukemia. Haematologica, 2017, 102, e253-e256.	3.5	13
44	A scoring system to predict the risk of atrial fibrillation in chronic lymphocytic leukemia. Hematological Oncology, 2019, 37, 508-512.	1.7	13
45	Bortezomib-based regimens in patients with POEMS syndrome: a case series in newly diagnosed and relapsed patients. Leukemia and Lymphoma, 2019, 60, 2067-2070.	1.3	13
46	The BCL2 Inhibitor Venetoclax Plus Rituximab Is Active in MYD88 Wild-Type Polyneuropathy With Anti-MAG Antibodies. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	13
47	Infections in patients with lymphoproliferative diseases treated with targeted agents: SEIFEM multicentric retrospective study. British Journal of Haematology, 2021, 193, 316-324.	2.5	12
48	Risk of hepatitis B virus reactivation in chronic lymphocytic leukemia patients receiving ibrutinib with or without antiviral prophylaxis. A retrospective multicentric GIMEMA study. Haematologica, 2022, 107, 1470-1473.	3.5	12
49	Assessment of the 4â€factor score: Retrospective analysis of 586 CLL patients receiving ibrutinib. A campus CLL study. American Journal of Hematology, 2021, 96, E168-E171.	4.1	10
50	Subcutaneous immunoglobulins replacement therapy in secondary antibody deficiencies: Real life evidence as compared to primary antibody deficiencies. PLoS ONE, 2021, 16, e0247717.	2.5	10
51	CX-4945, a Selective Inhibitor of Casein Kinase 2, Synergizes with B Cell Receptor Signaling Inhibitors in Inducing Diffuse Large B Cell Lymphoma Cell Death. Current Cancer Drug Targets, 2018, 18, 608-616.	1.6	10
52	Brentuximab vedotin consolidation after autologous stem cell transplantation for Hodgkin lymphoma: A Fondazione Italiana Linfomi realâ€life experience. Hematological Oncology, 2022, 40, 32-40.	1.7	10
53	Therapeutic Monoclonal Antibody Therapies in Chronic Autoimmune Demyelinating Neuropathies. Neurotherapeutics, 2022, 19, 874-884.	4.4	10
54	Antiâ€sulfatide/galactocerebroside antibodies in immunoglobulin M paraproteinemic neuropathies. European Journal of Neurology, 2017, 24, 1334-1340.	3.3	9

#	Article	IF	CITATIONS
55	From Biology to Treatment of Monoclonal Gammopathies of Neurological Significance. Cancers, 2022, 14, 1562.	3.7	9
56	New responsibilities for aged kinases in B″ymphomas. Hematological Oncology, 2020, 38, 3-11.	1.7	8
57	Mechanisms of Nerve Damage in Neuropathies Associated with Hematological Diseases: Lesson from Nerve Biopsies. Brain Sciences, 2021, 11, 132.	2.3	8
58	Efficacy of idelalisib and rituximab in relapsed/refractory chronic lymphocytic leukemia treated outside of clinical trials. A report of the Gimema Working Group. Hematological Oncology, 2021, 39, 326-335.	1.7	8
59	<scp><i>TP53</i></scp> disruption as a risk factor in the era of targeted therapies: A multicenter retrospective study of 525 chronic lymphocytic leukemia cases. American Journal of Hematology, 2021, 96, E306-E310.	4.1	8
60	From pathogenesis to personalized treatments of neuropathies in hematological malignancies. Journal of the Peripheral Nervous System, 2020, 25, 212-221.	3.1	7
61	Validation of a survival-risk score (SRS) in relapsed/refractory CLL patients treated with idelalisib–rituximab. Blood Cancer Journal, 2020, 10, 92.	6.2	7
62	Enhanced IL-9 secretion by p66Shc-deficient CLL cells modulates the chemokine landscape of the stromal microenvironment. Blood, 2021, 137, 2182-2195.	1.4	7
63	Idelalisib plus rituximab is effective in systemic AL amyloidosis secondary to chronic lymphocytic leukaemia. Hematological Oncology, 2018, 36, 366-369.	1.7	6
64	Cortactin expression in non-Hodgkin B-cell lymphomas: a new marker for the differential diagnosis between chronic lymphocytic leukemia and mantle cell lymphoma. Human Pathology, 2019, 85, 251-259.	2.0	6
65	Innovative therapeutic strategy for B-cell malignancies that combines obinutuzumab and cytokine-induced killer cells. , 2021, 9, e002475.		6
66	A Scoring System to Predict the Risk of Atrial Fibrillation in Chronic Lymphocytic Leukemia and Its Validation in a Cohort of Ibrutinib-Treated Patients. Blood, 2018, 132, 3118-3118.	1.4	6
67	Epidemiology and Risk Factors of Invasive Fungal Infections Among 795 Patients with Chronic Lymphocytic Leukemia from the Padua University. Blood, 2016, 128, 2527-2527.	1.4	6
68	Abnormal regulation of BCR signalling by c-Cbl in chronic lymphocytic leukaemia. Oncotarget, 2018, 9, 32219-32231.	1.8	6
69	Targeting of HSP70/HSF1 Axis Abrogates In Vitro Ibrutinib-Resistance in Chronic Lymphocytic Leukemia. Cancers, 2021, 13, 5453.	3.7	6
70	Old and New Drugs for Chronic Lymphocytic Leukemia: Lights and Shadows of Real-World Evidence. Journal of Clinical Medicine, 2022, 11, 2076.	2.4	6
71	Comparison of ibrutinib and idelalisib plus rituximab in realâ€ŀife relapsed/resistant chronic lymphocytic leukemia cases. European Journal of Haematology, 2021, 106, 493-499.	2.2	5
72	Increased Survival and Migration of CLL B-Cells in the Presence of Marrow Mesenchymal Stromal Cells: Novel Findings for Microenvironment-Targeted Therapies. Blood, 2012, 120, 4571-4571.	1.4	5

#	Article	IF	CITATIONS
73	Prediction of outcomes in chronic lymphocytic leukemia patients treated with ibrutinib: Validation of current prognostic models and development of a simplified threeâ€factor model. American Journal of Hematology, 2022, 97, .	4.1	5
74	p66Shc Deficiency in Chronic Lymphocytic Leukemia Promotes Chemokine Receptor Expression Through the ROS-Dependent Inhibition of NF-Î $^{\circ}$ B. Frontiers in Oncology, 0, 12, .	2.8	5
75	Dabigatran in ibrutinibâ€ŧreated patients with atrial fibrillation and lymphoproliferative diseases: Experience of 4 cases. Hematological Oncology, 2018, 36, 801-803.	1.7	4
76	Infections in patients with lymphoproliferative diseases treated with brentuximab vedotin: SEIFEM multicentric retrospective study. Leukemia and Lymphoma, 2020, 61, 3002-3005.	1.3	4
77	Clinical Characteristics and Outcome of West Nile Virus Infection in Patients with Lymphoid Neoplasms: An Italian Multicentre Study. HemaSphere, 2020, 4, e395.	2.7	4
78	Protein Kinase CK1α Sustains B-Cell Receptor Signaling in Mantle Cell Lymphoma. Frontiers in Oncology, 2021, 11, 733848.	2.8	4
79	Increase of immunoglobulin A during ibrutinib therapy reduces infection rate in chronic lymphocytic leukemia patients. Hematological Oncology, 2021, 39, 141-144.	1.7	3
80	Effectiveness of ibrutinib as firstâ€line therapy for chronic lymphocytic leukemia patients and indirect comparison with rituximabâ€bendamustine: Results of study on 486 cases outside clinical trials. American Journal of Hematology, 2021, 96, E269-E272.	4.1	3
81	Protective Role Immunoglobulin Replacement Therapy in Chronic Lymphocytic Leukemia: FOCUS on Subcutaneous Immunoglobulin Formulations. Blood, 2018, 132, 4954-4954.	1.4	3
82	How COVID-19 pandemic changed our attitude to venetoclax-based treatment in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2022, , 1-4.	1.3	3
83	Nerve ultrasound abnormalities mirror the course of varicella zoster virus sensory–motor radiculoplexopathy. Muscle and Nerve, 2017, 55, E16-E18.	2.2	2
84	A case of "double hit―mantle cell lymphoma carrying CCND1 and MYC translocations relapsed/refractory to rituximab bendamustine cytarabine (R-BAC) and ibrutinib. Annals of Hematology, 2020, 99, 2715-2717.	1.8	2
85	Limbic Encephalitis with HU-Antibodies in T-cell Anaplastic Lymphoma. A Case Report. Applied Sciences (Switzerland), 2021, 11, 6548.	2.5	2
86	Inhibition of JAK2/STAT3 Pathway Leads to Apoptosis in Chronic Lymphocytic Leukemia Cells. Blood, 2016, 128, 2023-2023.	1.4	2
87	Glycerophosphoinositol Promotes Apoptosis of Chronic Lymphocytic Leukemia Cells by Enhancing Bax Expression and Activation. Frontiers in Oncology, 2022, 12, 835290.	2.8	2
88	Relative dose intensity of obinutuzumab-chlorambucil in chronic lymphocytic leukemia: a multicenter Italian study. Blood Advances, 2022, 6, 3875-3878.	5.2	2
89	Impact of Serum Immunoglobulin Subsets and Levels on Chronic Lymphocytic Leukemia Natural History: A Retrospective Multicentric Italian Experience. Blood, 2019, 134, 3026-3026.	1.4	1
90	Evaluation of Integrated CLL Scoring System (ICSS) in 420 Patients with Chronic Lymphocytic Leukemia. Blood, 2016, 128, 5563-5563.	1.4	1

#	Article	IF	CITATIONS
91	Cortactin Is a New Player in Aggressiveness and Diffusion of Chronic Lymphocytic Leukaemia. Blood, 2016, 128, 4353-4353.	1.4	1
92	Real-World Evidence on Therapeutic Strategies and Treatment-Sequencing in Patients with Chronic Lymphocytic Leukemia: An International Study of Eric, the European Research Initiative on CLL. Blood, 2021, 138, 2635-2635.	1.4	1
93	Efficacy and Safety of Front-Line Venetoclax and Rituximab (VenR) for the Treatment of Young Patients with Chronic Lymphocytic Leukemia and an Unfavorable Biologic Profile. Preliminary Results of the Gimema Study 'Veritas'. Blood, 2020, 136, 47-49.	1.4	1
94	Multicenter Long Term Follow-up in Hairy Cell Leukemia Patients Treated with Cladribine: A Thirty-Year Experience. Blood, 2020, 136, 32-33.	1.4	1
95	Complex Karyotype Subtypes at Chronic Lymphocytic Leukemia Diagnosis Refine the Risk of Developing a Richter Syndrome. the Richter Syndrome Scoring System. Blood, 2020, 136, 33-34.	1.4	1
96	Primary Myelofibrosis Occurring during Targeted Therapy for Chronic Lymphocytic Leukemia: A Report of Two Cases. Current Oncology, 2022, 29, 1455-1460.	2.2	1
97	Anaemia during venetoclax rampâ€up phase: Do not forget unusual causes. International Journal of Laboratory Hematology, 2022, 44, .	1.3	1
98	LDH as Predictive Parameter in Treatment-NaÃ ⁻ ve Patients Affected by Chronic Lymphocytic Leukemia with Trisomy 12. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, S213.	0.4	0
99	Splenic marginal zone lymphoma with a de novo t(8;14)(q24;q32) and a prolymphocytoid evolution responsive to rituximab-bendamustine. Annals of Hematology, 2018, 97, 2001-2003.	1.8	Ο
100	Incidental lymphomas in surgical pathology: diagnostic clues and clinical-pathological correlations. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, , 1.	2.8	0
101	Cortactin Expression Is Tightly Connected to B-Cell Chronic Lymphocytic Leukemia Aggressiveness. Blood, 2012, 120, 4561-4561.	1.4	Ο
102	Analysis of Major Infection Risk in 706 Patients with Chronic Lymphocytic Leukemia. Blood, 2014, 124, 3321-3321.	1.4	0
103	Expression of FAK and Its Involvement in the Progression of B-Cell Chronic Lymphocytic Leukemia. Blood, 2014, 124, 3309-3309.	1.4	Ο
104	Italian Real Life Experience with Brentuximab Vedotin: Results of a National Observational Study on Relapsed/Refractory Hodgkin's Lymphoma. Blood, 2016, 128, 4161-4161.	1.4	0
105	Italian Real Life Experience with Brentuximab Vedotin: Results of a National Observational Study on Relapsed/Refractory Anaplastic Large Cell Lymphoma. Blood, 2016, 128, 3007-3007.	1.4	Ο
106	HSP70-HSF1 Interplays Has a Role in the Pathogenesis of Chronic Lymphocytic Leukemia and Is a Druggable Target. Blood, 2016, 128, 4368-4368.	1.4	0
107	Three Different Jak2/Stat3-Related Pathways Favor the Survival of Chronic Lymphocytic Leukemia Neoplastic Clone. Blood, 2018, 132, 4405-4405.	1.4	0
108	Calcium Mobilization in Unfavorable-Prognosis Chronic Lymphocytic Leukemia Patients Mediates Focal Adhesion Kinase (FAK) Cleavage, Thereby Its Activation. Blood, 2018, 132, 5537-5537.	1.4	0

#	Article	lF	CITATIONS
109	Monoclonal Gammopathy and Hypogammaglobulinemia As Prognostic Factors in Patients with Chronic Lymphocytic Leukemia: A Retrospective Multicentric Experience. Blood, 2018, 132, 5542-5542.	1.4	0
110	The Combination of Complex Karyotypes' Subtypes and IGHV Mutational Status Provides Prognostic and Predictive Information in Chronic Lymphocytic Leukemia. Blood, 2018, 132, 1844-1844.	1.4	0
111	Targeting Ras-Signalling Pathway to Strike Hsf1 and Induce Apoptosis in Chronic Lymphocytic Leukemia. Blood, 2018, 132, 5533-5533.	1.4	0
112	Pre-Existing and Treatment-Emergent Autoimmune Cytopenias in Patients with Chronic Lymphocytic Leukemia Treated with Targeted Drugs. Blood, 2019, 134, 3044-3044.	1.4	0
113	Front-Line Treatment with Obinutuzumab ± Chlorambucil for Chronic Lymphocytic Leukemia in Real-World Clinical Practice: Results of a Multinational, Multicenter Study By Eric and Icllsg. Blood, 2019, 134, 1766-1766.	1.4	0
114	Response to "Cardiovascular adverse events in patients with chronic lymphocytic leukemia receiving acalabrutinib monotherapy: pooled analysis of 762 patients― Haematologica, 2021, , .	3.5	0
115	Efficacy of Front-Line Ibrutinib Versus Fludarabine, Cyclophosphamide and Rituximab (FCR) in Patients with CLL. a Multicenter "Real-World" Study. Blood, 2021, 138, 2641-2641.	1.4	0
116	Efficacy of Idelalisib and Rituximab in Relapsed/Refractory Chronic Lymphocytic Leukemia Treated Outside of Clinical Trial. a Report of the Gimema Group. Blood, 2020, 136, 23-25.	1.4	0
117	Retrospective Real-Life Comparison of Obinutuzumab Plus Chlorambucil Versus Ibrutinib in Previously Untreated and Unfit Patients with Chronic Lymphocytic Leukemia without TP53 Disruptions. Interim Results from the Italian CLL Campus. Blood, 2020, 136, 30-31.	1.4	0
118	A Case of Hemophagocytic Lymphohistiocytosis Triggered by Disseminated Tuberculosis and Hairy Cell Leukaemia after SARS-CoV2 Infection. Applied Sciences (Switzerland), 2022, 12, 564.	2.5	0
119	Automated SAT Problem Feature Extraction using Convolutional Autoencoders. , 2021, , .		0