Anthony J Greenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8758802/publications.pdf Version: 2024-02-01

ANTHONY | CREENRERC

#	Article	IF	CITATIONS
1	Eradication of avian leukosis virus subgroups J and K in broiler cross chickens by selection against infected birds using multilocus PCR. PLoS ONE, 2022, 17, e0269525.	2.5	4
2	Genetic architecture of root and shoot ionomes in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2021, 134, 2613-2637.	3.6	9
3	Low Additive Genetic Variation in a Trait Under Selection in Domesticated Rice. G3: Genes, Genomes, Genetics, 2020, 10, 2435-2443.	1.8	9
4	Multiple Small-Effect Alleles of Indica Origin Enhance High Iron-Associated Stress Tolerance in Rice Under Field Conditions in West Africa. Frontiers in Plant Science, 2020, 11, 604938.	3.6	10
5	Fast Ordered Sampling of DNA Sequence Variants. G3: Genes, Genomes, Genetics, 2018, 8, 1455-1460.	1.8	0
6	Extremely low genetic diversity across mangrove taxa reflects past sea level changes and hints at poor future responses. Global Change Biology, 2018, 24, 1741-1748.	9.5	41
7	Genome-Wide Convergence during Evolution of Mangroves from Woody Plants. Molecular Biology and Evolution, 2017, 34, msw277.	8.9	43
8	The emergence of the hyperinvasive vine, <i>Mikania micrantha</i> (Asteraceae), via admixture and founder events inferred from population transcriptomics. Molecular Ecology, 2017, 26, 3405-3423.	3.9	16
9	Robust phenotyping strategies for evaluation of stem non-structural carbohydrates (NSC) in rice. Journal of Experimental Botany, 2016, 67, 6125-6138.	4.8	31
10	Open access resources for genome-wide association mapping in rice. Nature Communications, 2016, 7, 10532.	12.8	371
11	Population Dynamics Among six Major Groups of the Oryza rufipogon Species Complex, Wild Relative of Cultivated Asian Rice. Rice, 2016, 9, 56.	4.0	80
12	Loss of function at <i>RAE2</i> , a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8969-8974.	7.1	94
13	Global Diversity Lines–A Five-Continent Reference Panel of Sequenced <i>Drosophila melanogaster</i> Strains. G3: Genes, Genomes, Genetics, 2015, 5, 593-603.	1.8	124
14	High-Resolution Inflorescence Phenotyping Using a Novel Image-Analysis Pipeline, PANorama Â. Plant Physiology, 2014, 165, 479-495.	4.8	63
15	Nuclear and chloroplast diversity and phenotypic distribution of rice (Oryza sativa L.) germplasm from the democratic people's republic of Korea (DPRK; North Korea). Rice, 2014, 7, 7.	4.0	14
16	Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theoretical and Applied Genetics, 2013, 126, 867-887.	3.6	512
17	Age-Dependent Transition from Cell-Level to Population-Level Control in Murine Intestinal Homeostasis Revealed by Coalescence Analysis. PLoS Genetics, 2013, 9, e1003326.	3.5	16
18	Environmental and genetic perturbations reveal different networks of metabolic regulation. Molecular Systems Biology, 2011, 7, 563.	7.2	27

ANTHONY J GREENBERG

#	Article	IF	CITATIONS
19	Two Evolutionary Histories in the Genome of Rice: the Roles of Domestication Genes. PLoS Genetics, 2011, 7, e1002100.	3.5	188
20	Genome-wide misexpression of X-linked versus autosomal genes associated with hybrid male sterility. Genome Research, 2010, 20, 1097-1102.	5.5	38
21	A Hierarchical Bayesian Model for a Novel Sparse Partial Diallel Crossing Design. Genetics, 2010, 185, 361-373.	2.9	36
22	Evolution of protein-coding genes in Drosophila. Trends in Genetics, 2008, 24, 114-123.	6.7	262
23	Evolutionary Constraint and Adaptation in the Metabolic Network of Drosophila. Molecular Biology and Evolution, 2008, 25, 2537-2546.	8.9	58
24	Evolution of genes and genomes on the Drosophila phylogeny. Nature, 2007, 450, 203-218.	27.8	1,886
25	PROPER CONTROL OF GENETIC BACKGROUND WITH PRECISE ALLELE SUBSTITUTION: A COMMENT ON COYNE AND ELWYN. Evolution; International Journal of Organic Evolution, 2006, 60, 623-625.	2.3	16
26	Adaptive Loss of an Old Duplicated Gene During Incipient Speciation. Molecular Biology and Evolution, 2006, 23, 401-410.	8.9	21
27	Molecular Genetics of Natural Populations. Molecular Biology and Evolution, 2006, 23, 883-886.	8.9	6
28	The Drosophila GAGA Factor Is Required for Dosage Compensation in Males and for the Formation of the Male-Specific-Lethal Complex Chromatin Entry Site at 12DE. Genetics, 2004, 166, 279-289.	2.9	29
29	Ecological Adaptation During Incipient Speciation Revealed by Precise Gene Replacement. Science, 2003, 302, 1754-1757.	12.6	158
30	GAGA Factor Isoforms Have Distinct but Overlapping Functions In Vivo. Molecular and Cellular Biology, 2001, 21, 8565-8574.	2.3	32