JiÅú PavlÅ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8758364/publications.pdf

Version: 2024-02-01

		623734	677142
64	555	14	22
papers	citations	h-index	g-index
76	76	76	401
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Detection of Dust Particles Using Faraday Cup Instruments. Astrophysical Journal, 2021, 909, 132.	4.5	2
2	Spectra of Temperature Fluctuations in the Solar Wind. Atmosphere, 2021, 12, 1277.	2.3	3
3	Ion Cloud Expansion after Hyper-velocity Dust Impacts Detected by the Magnetospheric Multiscale Mission Electric Probes in the Dipole Configuration. Astrophysical Journal, 2021, 921, 127.	4.5	1
4	Magnetic Field Effect on Antenna Signals Induced by Dust Particle Impacts. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027245.	2.4	8
5	Phase-stable segmentation of BSCCO high-temperature superconductor into micro-, meso-, and nano-size fractions. Journal of Materials Research and Technology, 2020, 9, 12071-12079.	5. 8	3
6	Effective Temperatures of Olivine Dust Impact Plasmas. IEEE Transactions on Plasma Science, 2020, 48, 4298-4304.	1.3	3
7	Understanding Cassini RPWS Antenna Signals Triggered by Dust Impacts. Geophysical Research Letters, 2019, 46, 10941-10950.	4.0	18
8	Dust observations with antenna measurements and its prospects for observations with Parker Solar Probe and Solar Orbiter. Annales Geophysicae, 2019, 37, 1121-1140.	1.6	26
9	Oneâ€Year Analysis of Dust Impactâ€Like Events Onto the MMS Spacecraft. Journal of Geophysical Research: Space Physics, 2019, 124, 8179-8190.	2.4	17
10	Auto-ionization of LiF grains. AIP Conference Proceedings, 2018, , .	0.4	0
10	Auto-ionization of LiF grains. AIP Conference Proceedings, 2018, , . Guest Editorial Special Issue on Dusty Plasmas. IEEE Transactions on Plasma Science, 2018, 46, 682-683.	0.4	0
11	Guest Editorial Special Issue on Dusty Plasmas. IEEE Transactions on Plasma Science, 2018, 46, 682-683.	1.3	0
11 12	Guest Editorial Special Issue on Dusty Plasmas. IEEE Transactions on Plasma Science, 2018, 46, 682-683. MF Microspheres: Helping or Puzzling Tool?. IEEE Transactions on Plasma Science, 2018, 46, 709-717.	1.3	4
11 12	Guest Editorial Special Issue on Dusty Plasmas. IEEE Transactions on Plasma Science, 2018, 46, 682-683. MF Microspheres: Helping or Puzzling Tool?. IEEE Transactions on Plasma Science, 2018, 46, 709-717. Do we detect interplanetary dust with Faraday cups?. Planetary and Space Science, 2018, 156, 17-22. Laboratory modeling of dust impact detection by the Cassini spacecraft. Planetary and Space Science,	1.3 1.3	0 4
11 12 13	Guest Editorial Special Issue on Dusty Plasmas. IEEE Transactions on Plasma Science, 2018, 46, 682-683. MF Microspheres: Helping or Puzzling Tool?. IEEE Transactions on Plasma Science, 2018, 46, 709-717. Do we detect interplanetary dust with Faraday cups?. Planetary and Space Science, 2018, 156, 17-22. Laboratory modeling of dust impact detection by the Cassini spacecraft. Planetary and Space Science, 2018, 156, 85-91. Dust grain characterization — Direct measurement of light scattering. AIP Conference Proceedings,	1.3 1.7 1.7	0 4 1 24
11 12 13 14	Guest Editorial Special Issue on Dusty Plasmas. IEEE Transactions on Plasma Science, 2018, 46, 682-683. MF Microspheres: Helping or Puzzling Tool?. IEEE Transactions on Plasma Science, 2018, 46, 709-717. Do we detect interplanetary dust with Faraday cups?. Planetary and Space Science, 2018, 156, 17-22. Laboratory modeling of dust impact detection by the Cassini spacecraft. Planetary and Space Science, 2018, 156, 85-91. Dust grain characterization — Direct measurement of light scattering. AIP Conference Proceedings, 2018, Secondary electron emission and its role in the space environment. AIP Conference Proceedings, 2018,	1.3 1.7 1.7	0 4 1 24

#	Article	IF	Citations
19	Secondary Emission From Clusters Composed of Spherical Grains. IEEE Transactions on Plasma Science, 2016, 44, 505-511.	1.3	6
20	Investigations of Photoemission From Lunar Dust Simulant. IEEE Transactions on Plasma Science, 2016, 44, 512-518.	1.3	4
21	The influence of secondary electron emission on the floating potential of tokamak-born dust. Plasma Physics and Controlled Fusion, 2014, 56, 025001.	2.1	13
22	Secondary electron emission from Martian soil simulant. Journal of Geophysical Research E: Planets, 2014, 119, 199-209.	3.6	1
23	Numerical Calculation of an Equilibrium Dust Grain Potential in Lunar Environment. IEEE Transactions on Plasma Science, 2013, 41, 740-744.	1.3	5
24	Fast Solar Wind Monitor (BMSW): Description and First Results. Space Science Reviews, 2013, 175, 165-182.	8.1	68
25	SHORT-SCALE VARIATIONS OF THE SOLAR WIND HELIUM ABUNDANCE. Astrophysical Journal, 2013, 778, 25.	4. 5	25
26	Linear trap with three orthogonal quadrupole fields for dust charging experiments. Review of Scientific Instruments, 2012, 83, 115109.	1.3	4
27	SECONDARY EMISSION FROM NON-SPHERICAL DUST GRAINS WITH ROUGH SURFACES: APPLICATION TO LUNAR DUST. Astrophysical Journal, 2012, 761, 108.	4.5	10
28	LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: DEPENDENCE OF THE SURFACE POTENTIAL ON THE GRAIN SIZE. Astrophysical Journal, 2011, 738, 14.	4.5	22
29	Modeling the secondary emission yield of salty ice dust grains. Icarus, 2011, 212, 367-372.	2.5	5
30	Self-discharging Of Positively Charged Dust Grains. AIP Conference Proceedings, 2011, , .	0.4	0
31	Electrons Emitted From Small Dust Grains: Comparison Of Sphere And Cube. AIP Conference Proceedings, 2011, , .	0.4	1
32	The Shape And Charge Of Lunar Dust Simulant (LHT) Under Electron Bombardment. AIP Conference Proceedings, 2011, , .	0.4	0
33	Composition And Electrical Properties Of Dust From Tokamak Compass. AIP Conference Proceedings, 2011, , .	0.4	0
34	Dust as a Gas Carrier. IEEE Transactions on Plasma Science, 2010, 38, 886-891.	1.3	5
35	Electrons scattered inside small dust grains of various materials. Physical Review B, 2010, 81, .	3.2	15
36	Dust Charging in Spaceâ€related Laboratory Experiments: A Review Focused on Secondary Emission. Contributions To Plasma Physics, 2009, 49, 169-186.	1,1	15

#	Article	IF	CITATIONS
37	Experimental Test of the Evans' B(3)-Field: MeasuringÂthe Interaction withÂFreeÂElectrons. Foundations of Physics, 2009, 39, 1191-1196.	1.3	1
38	Secondary electron emission from highly charged carbon grains. European Physical Journal D, 2009, 54, 299-304.	1.3	3
39	Field emission characteristics of gold dust grains. Advances in Space Research, 2008, 42, 129-135.	2.6	5
40	An application of the dust grain charging model to determination of secondary electron spectra. European Physical Journal D, 2008, 48, 375-381.	1.3	3
41	Interaction between single dust grains and ions or electrons: laboratory measurements and their consequences for the dust dynamics. Faraday Discussions, 2008, 137, 139-155.	3.2	29
42	Influence of the Electric Field on Secondary Electron Emission Yield. AIP Conference Proceedings, 2008, , .	0.4	0
43	Peculiarities of the Field Electron Emission from Dust Grains. AIP Conference Proceedings, 2008, , .	0.4	0
44	Changes of Dust Grain Properties Under Particle Bombardment. AIP Conference Proceedings, 2008, , .	0.4	1
45	Influence of Charging Conditions on Field Ion Emission From Dust Grains. IEEE Transactions on Plasma Science, 2007, 35, 292-296.	1.3	12
46	Secondary Emission From Glass Grains: Comparison of the Model and Experiment. IEEE Transactions on Plasma Science, 2007, 35, 286-291.	1.3	15
47	The Sputtering of Dust Grains: Aspects of Experimental Observations. IEEE Transactions on Plasma Science, 2007, 35, 297-302.	1.3	9
48	Field emissions from dust grains. Planetary and Space Science, 2007, 55, 249-250.	1.7	0
49	Model of secondary emission and its application on the charging of gold dust grains. Physical Review B, 2006, 74, .	3.2	19
50	Impact of surface properties on the dust grain charging. Advances in Space Research, 2006, 38, 2558-2563.	2.6	4
51	Ion beam effects on dust grains: 2—Influence of charging history. Vacuum, 2006, 80, 542-547.	3.5	8
52	Secondary emission from dust grains with a surface layer: comparison between experimental and model results. Advances in Space Research, 2006, 38, 2551-2557.	2.6	6
53	The influence of ion bombardment on emission properties of small dust grains. European Physical Journal D, 2005, 55, 1283-1291.	0.4	2
54	Field Electron Emission from Gold Dust Grains. AIP Conference Proceedings, 2005, , .	0.4	1

JIÅ™Ã-PAVLů

#	Article	IF	CITATIONS
55	The Study of Field Ion Emission from Gold Dust Grains. AIP Conference Proceedings, 2005, , .	0.4	2
56	Energy Distributions of Secondary Electrons Under Different Conditions. AIP Conference Proceedings, 2005, , .	0.4	0
57	Electric Field Influence on Secondary Emission. AIP Conference Proceedings, 2005, , .	0.4	2
58	Ion beam effects on dust grains. Vacuum, 2004, 76, 447-455.	3.5	14
59	A Model of Secondary Emission From Dust Grains and Its Comparison With an Experiment. IEEE Transactions on Plasma Science, 2004, 32, 617-622.	1.3	21
60	Emissions From Nonconducting Negatively Charged Dust Grains. IEEE Transactions on Plasma Science, 2004, 32, 607-612.	1.3	6
61	Mass-Loss Rate for MF Resin Microspheres. IEEE Transactions on Plasma Science, 2004, 32, 704-708.	1.3	52
62	Problems of Dust Grains Charging to Negative Potentials. European Physical Journal D, 2003, 53, 151-162.	0.4	4
63	Charging Properties of Dust Grain Clusters. AIP Conference Proceedings, 2002, , .	0.4	3
64	Secondary Emission From Small Spherical Grains. AIP Conference Proceedings, 2002, , .	0.4	0