

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8758364/publications.pdf Version: 2024-02-01

ΙιՃ™ᾶ₋₽៱៶៸ι Δ⁻

#	Article	IF	CITATIONS
1	Fast Solar Wind Monitor (BMSW): Description and First Results. Space Science Reviews, 2013, 175, 165-182.	8.1	68
2	Mass-Loss Rate for MF Resin Microspheres. IEEE Transactions on Plasma Science, 2004, 32, 704-708.	1.3	52
3	Interaction between single dust grains and ions or electrons: laboratory measurements and their consequences for the dust dynamics. Faraday Discussions, 2008, 137, 139-155.	3.2	29
4	Dust observations with antenna measurements and its prospects for observations with Parker Solar Probe and Solar Orbiter. Annales Geophysicae, 2019, 37, 1121-1140.	1.6	26
5	SHORT-SCALE VARIATIONS OF THE SOLAR WIND HELIUM ABUNDANCE. Astrophysical Journal, 2013, 778, 25.	4.5	25
6	Laboratory modeling of dust impact detection by the Cassini spacecraft. Planetary and Space Science, 2018, 156, 85-91.	1.7	24
7	LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: DEPENDENCE OF THE SURFACE POTENTIAL ON THE GRAIN SIZE. Astrophysical Journal, 2011, 738, 14.	4.5	22
8	A Model of Secondary Emission From Dust Grains and Its Comparison With an Experiment. IEEE Transactions on Plasma Science, 2004, 32, 617-622.	1.3	21
9	Model of secondary emission and its application on the charging of gold dust grains. Physical Review B, 2006, 74, .	3.2	19
10	LUNAR SURFACE AND DUST GRAIN POTENTIALS DURING THE EARTH'S MAGNETOSPHERE CROSSING. Astrophysical Journal, 2016, 825, 133.	4.5	19
11	Understanding Cassini RPWS Antenna Signals Triggered by Dust Impacts. Geophysical Research Letters, 2019, 46, 10941-10950.	4.0	18
12	Oneâ€Year Analysis of Dust Impactâ€Like Events Onto the MMS Spacecraft. Journal of Geophysical Research: Space Physics, 2019, 124, 8179-8190.	2.4	17
13	Secondary Emission From Glass Grains: Comparison of the Model and Experiment. IEEE Transactions on Plasma Science, 2007, 35, 286-291.	1.3	15
14	Dust Charging in Spaceâ€related Laboratory Experiments: A Review Focused on Secondary Emission. Contributions To Plasma Physics, 2009, 49, 169-186.	1.1	15
15	Electrons scattered inside small dust grains of various materials. Physical Review B, 2010, 81, .	3.2	15
16	Ion beam effects on dust grains. Vacuum, 2004, 76, 447-455.	3.5	14
17	The influence of secondary electron emission on the floating potential of tokamak-born dust. Plasma Physics and Controlled Fusion, 2014, 56, 025001.	2.1	13
18	Influence of Charging Conditions on Field Ion Emission From Dust Grains. IEEE Transactions on Plasma Science, 2007, 35, 292-296.	1.3	12

JiÅ™Ã-PavlÅ⁻

#	Article	IF	CITATIONS
19	SECONDARY EMISSION FROM NON-SPHERICAL DUST GRAINS WITH ROUGH SURFACES: APPLICATION TO LUNAR DUST. Astrophysical Journal, 2012, 761, 108.	4.5	10
20	The Sputtering of Dust Grains: Aspects of Experimental Observations. IEEE Transactions on Plasma Science, 2007, 35, 297-302.	1.3	9
21	Ion beam effects on dust grains: 2—Influence of charging history. Vacuum, 2006, 80, 542-547.	3.5	8
22	Magnetic Field Effect on Antenna Signals Induced by Dust Particle Impacts. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027245.	2.4	8
23	Emissions From Nonconducting Negatively Charged Dust Grains. IEEE Transactions on Plasma Science, 2004, 32, 607-612.	1.3	6
24	Secondary emission from dust grains with a surface layer: comparison between experimental and model results. Advances in Space Research, 2006, 38, 2551-2557.	2.6	6
25	Secondary Emission From Clusters Composed of Spherical Grains. IEEE Transactions on Plasma Science, 2016, 44, 505-511.	1.3	6
26	Field emission characteristics of gold dust grains. Advances in Space Research, 2008, 42, 129-135.	2.6	5
27	Dust as a Gas Carrier. IEEE Transactions on Plasma Science, 2010, 38, 886-891.	1.3	5
28	Modeling the secondary emission yield of salty ice dust grains. Icarus, 2011, 212, 367-372.	2.5	5
29	Numerical Calculation of an Equilibrium Dust Grain Potential in Lunar Environment. IEEE Transactions on Plasma Science, 2013, 41, 740-744.	1.3	5
30	Problems of Dust Grains Charging to Negative Potentials. European Physical Journal D, 2003, 53, 151-162.	0.4	4
31	Impact of surface properties on the dust grain charging. Advances in Space Research, 2006, 38, 2558-2563.	2.6	4
32	Linear trap with three orthogonal quadrupole fields for dust charging experiments. Review of Scientific Instruments, 2012, 83, 115109.	1.3	4
33	Investigations of Photoemission From Lunar Dust Simulant. IEEE Transactions on Plasma Science, 2016, 44, 512-518.	1.3	4
34	MF Microspheres: Helping or Puzzling Tool?. IEEE Transactions on Plasma Science, 2018, 46, 709-717.	1.3	4
35	Charging Properties of Dust Grain Clusters. AIP Conference Proceedings, 2002, , .	0.4	3
36	An application of the dust grain charging model to determination of secondary electron spectra. European Physical Journal D, 2008, 48, 375-381.	1.3	3

JiÅ™Ã-PavlÅ⁻

#	Article	IF	CITATIONS
37	Secondary electron emission from highly charged carbon grains. European Physical Journal D, 2009, 54, 299-304.	1.3	3
38	Phase-stable segmentation of BSCCO high-temperature superconductor into micro-, meso-, and nano-size fractions. Journal of Materials Research and Technology, 2020, 9, 12071-12079.	5.8	3
39	Spectra of Temperature Fluctuations in the Solar Wind. Atmosphere, 2021, 12, 1277.	2.3	3
40	Effective Temperatures of Olivine Dust Impact Plasmas. IEEE Transactions on Plasma Science, 2020, 48, 4298-4304.	1.3	3
41	The influence of ion bombardment on emission properties of small dust grains. European Physical Journal D, 2005, 55, 1283-1291.	0.4	2
42	The Study of Field Ion Emission from Gold Dust Grains. AlP Conference Proceedings, 2005, , .	0.4	2
43	Electric Field Influence on Secondary Emission. AIP Conference Proceedings, 2005, , .	0.4	2
44	Sputtering of Spherical SiO2Samples. IEEE Transactions on Plasma Science, 2016, 44, 1036-1044.	1.3	2
45	Detection of Dust Particles Using Faraday Cup Instruments. Astrophysical Journal, 2021, 909, 132.	4.5	2
46	Field Electron Emission from Gold Dust Grains. AIP Conference Proceedings, 2005, , .	0.4	1
47	Changes of Dust Grain Properties Under Particle Bombardment. AlP Conference Proceedings, 2008, , .	0.4	1
48	Experimental Test of the Evans' B(3)-Field: MeasuringÂthe Interaction withÂFreeÂElectrons. Foundations of Physics, 2009, 39, 1191-1196.	1.3	1
49	Electrons Emitted From Small Dust Grains: Comparison Of Sphere And Cube. AlP Conference Proceedings, 2011, , .	0.4	1
50	Secondary electron emission from Martian soil simulant. Journal of Geophysical Research E: Planets, 2014, 119, 199-209.	3.6	1
51	Do we detect interplanetary dust with Faraday cups?. Planetary and Space Science, 2018, 156, 17-22.	1.7	1
52	Secondary electron emission and its role in the space environment. AIP Conference Proceedings, 2018, , .	0.4	1
53	Ion Cloud Expansion after Hyper-velocity Dust Impacts Detected by the Magnetospheric Multiscale Mission Electric Probes in the Dipole Configuration. Astrophysical Journal, 2021, 921, 127.	4.5	1
54	Secondary Emission From Small Spherical Grains. AIP Conference Proceedings, 2002, , .	0.4	0

JiÅ™Ã-PavlÅ⁻

#	Article	IF	CITATIONS
55	Energy Distributions of Secondary Electrons Under Different Conditions. AIP Conference Proceedings, 2005, , .	0.4	0
56	Field emissions from dust grains. Planetary and Space Science, 2007, 55, 249-250.	1.7	0
57	Influence of the Electric Field on Secondary Electron Emission Yield. AIP Conference Proceedings, 2008, , .	0.4	Ο
58	Peculiarities of the Field Electron Emission from Dust Grains. AIP Conference Proceedings, 2008, , .	0.4	0
59	Self-discharging Of Positively Charged Dust Grains. AIP Conference Proceedings, 2011, , .	0.4	Ο
60	The Shape And Charge Of Lunar Dust Simulant (LHT) Under Electron Bombardment. AIP Conference Proceedings, 2011, , .	0.4	0
61	Composition And Electrical Properties Of Dust From Tokamak Compass. AIP Conference Proceedings, 2011, , .	0.4	Ο
62	Auto-ionization of LiF grains. AIP Conference Proceedings, 2018, , .	0.4	0
63	Guest Editorial Special Issue on Dusty Plasmas. IEEE Transactions on Plasma Science, 2018, 46, 682-683.	1.3	0
64	Dust grain characterization — Direct measurement of light scattering. AIP Conference Proceedings, 2018, , .	0.4	0